EMAIL TO: All RFP recipients on record.

The RFP Package is hereby clarified or changed as follows:

Item 1. Add 35% design drawings for Beaver and Chalkyitsik, narrative description of the 35% design is included in the RFP.

All other terms and conditions remain the same.

END OF ADDENDUM

Sincerely,

Lois Lemus,
Contracting Officer
907-771-3909
llemus@aidea.org
BEAVER BULK FUEL UPGRADES

CONCEPT DRAWINGS

AUGUST 2020
C1.3

Task Farm 1 - Decommissioning SMART

<table>
<thead>
<tr>
<th>Task</th>
<th>Position</th>
<th>Height</th>
<th>Depth</th>
<th>Tank Type</th>
<th>Quantity</th>
<th>Capacity (Gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>2</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>3</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>4</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>5</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>6</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>7</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>8</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
<tr>
<td>9</td>
<td>SW</td>
<td>15"</td>
<td>12"</td>
<td>SW</td>
<td>1200</td>
<td>9,600</td>
</tr>
</tbody>
</table>

TOTAL CAPACITY: 86,400

Task Decommissioning and Removal

1. The contractor shall visually inspect all on-ground tanks designated on the contract documents for decommissioning. Contractor shall determine if product exists within each tank. If product exists, contractor shall pump, filter, and drain all usable product to temporary storage. After all usable product and any accumulated water have been removed, contractor shall measure the inside diameter of the tank and all remaining dimensions from these measurements, the approximate volume of solids in each tank shall be calculated.

2. The contractor shall clean the interior of each tank in accordance to API 521 and any other approved methods. The contractor shall implement a confined space entry plan system ensuring any worker enters each tank. The contractor shall monitor the tank atmosphere for toxic, oxygen levels, and explosive gases.

3. If sludge is removed from the tank, the contractor shall place in an approved container and attach a label that contains the following information:
 - Container identification number
 - Name of tank
 - Date removed

4. The contractor shall remove all tank contents and transfer all usable liquid removed from piping to the respective entities taking any unusable fuel if sludge shall be assumed to be hazardous waste and disposed of by the contractor in accordance with the specifications.

5. After fuel is removed from the piping, the pipe shall be cut into maximum 10 foot lengths and stored neatly at an approved location.

Confined Sludge

1. The hazardous nature of the confined sludge will be based upon composite testing performed by the contractor in accordance with 40 CFR 261.

2. All waste that is deemed hazardous in accordance with 40 CFR 261 shall be removed in accordance with 40 CFR 262. In addition, the contractor shall use EPA-issued hazardous waste manifests, CERCLA, or similar EPA form.

3. Payment of transport and disposal fees shall be made by contractor.

Notes:

- All existing tanks, piping valves, and appurtenances shown above shall be decommissioned in accordance with the project specifications.
TANK FARM #2 SITE PLAN

SCALE GRAPHIC

1. Transfer fuel from existing tanks to temporary storage.
2. Remove vegetation and debris from dry area. Perform visual inspection of liner and repair as necessary. Leave tank in place.
3. Replace existing manifold piping with new welded steel piping. Limit increased connections to tank connection only.
4. Install new ball valves as shown for isolation and de-pressurization of fuel by owner. Install pressure relief valves as necessary.
5. Connect new tank manifold piping to existing pipeline to school complex.
6. Install new pump cabinet adjacent to tank farm and tie into S/C tank manifold. Pump will supply power plant intermediate tank and S/C hose reel.
7. Install area light fixture. Enclosure adjacent to tank farm dry area and connect to pump cabinet via 2½ inch drain pipe.
8. Install new 1,000-gallon, 1x 2050. Package dispenser system. Connect to new gasoline fill piping from airport.
9. Install new light poles and area lighting as shown.
10. Electrical service and overhead as required.
11. Install pump control panel.
NOTES:

1. THIS SHEET SHOWS THE DESIRED FUNCTIONALITY AND GENERAL LAYOUT OF THE PROPOSED SYSTEMS. THE ENGINEERING NOTATION IS NOT TO SHOW ALL EQUIPMENT AS DESIGNED.

2. CONTRACTOR SHALL PROVIDE SUFFICIENT INFORMATION TO ALLOW THE DESIGN AND PREPARE SHOP DRAWINGS FOR REASSEMBLY AND APPROVAL PRIOR TO FABRICATION. IT IS ASSUMED THAT THE CONTRACTOR WILL INTEGRATE DESIGNS AND TECHNOLOGIES FOR FABRICATION.

3. TANK 1 - 1,500 GALLON PROTECTED DISPENSING TANK

4. SWIM MOUNTED METAL DISPENSING KNOCK BOX BOARD TANK MANUFACTURED

SPECIFIC NOTES:

1. 3" FLANGED GATE VALVE
2. 3" THREADED PENETRATION WATER ORIFICE
3. 3" THREADED PENETRATION 1/2" PRESSURE DRAIN W/ 3/4" NIPPLE
4. 3" THREADED PENETRATION 1/2" PRESSURE DRAIN W/ 3/4" NIPPLE
5. 3" THREADED PENETRATION 1/2" PRESSURE DRAIN W/ 3/4" NIPPLE
6. 3" FLANGED PENETRATION (PRIMARY E-VENT)
7. 2" MAINWAY
8. 3" HR/VENT & 2 DOUBLE TRAP DRAIN & 3" SHOP DRAIN
9. 2" GROSS LIMITER
10. 3" THREADED PENETRATION 1/2" PRESSURE DRAIN W/ 3/4" NIPPLE
11. 4" FLANGED EXHAUST VENT
12. 4" FLANGED EXHAUST VENT
13. 4" FLANGED EXHAUST VENT
14. 4" FLANGED EXHAUST VENT
15. 4" FLANGED EXHAUST VENT

SECTION VIEW

SCHEDULE OF MATERIALS

- 1,500 GALLON PROTECTED DISPENSING TANK (3.80 x 9.97)

END VIEW

- EXIT DRAINAGE

NOTE: Dispenser not shown on end view.
TABLE TASK FARM 1 – DECOMMISSIONING CHART

<table>
<thead>
<tr>
<th>TASK NO.</th>
<th>DESCRIPTION</th>
<th>TANK TYPE</th>
<th>PROJECT ID</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: MAIL TO BROOK PLANT DEALERS.

DECOMMISSIONING AND HAZARD

1. The contractor shall visually inspect all aboveground tanks designated on the contract drawings. For decommissioning, contractor shall determine in each tank if product exists, contractor shall pump, filter, and transfer all usable product to temporary storage. After all usable product and any accumulated water has been removed, contractor shall measure the inside diameter of the tank and report to the owner. If any of these measurements, the average volume of residue in each tank shall be calculated.

2. The contractor shall clean the interior of each tank in accordance to API 2000 or other approved method. The contractor shall implement a confined space entry permit system before anyone enters each tank. The contractor shall notify the tank owner regarding any toxic, oxygen levels, and explosive vapors.

3. If residue is removed from the tank, the contractor shall place in an appropriate container and attach a label that contains the following information:
 - Tank number
 - Owner of tank
 - Date removed

 The consolidation of residue from tanks containing different products of origin by different methods will not be allowed without prior written approval of the engineering and tank contractor. Should this occur without prior approval, the contractor shall be fully responsible for all cost associated with the manufacturing, transport, and proper disposal of it.

4. Appropriate personal protective equipment will be used to protect workers from on-site hazards.

5. All tanks shall be removed or unusable by the contractor at the time of decommissioning by cutting a hole at bottom of tank side wall, or other means acceptable to AGA.

PIPE DECOMMISSIONING AND HAZARD

1. All fixed and residual liquid shall be completely removed from existing piping. If any alternate means and methods submitted by the contractor of alternate means and methods will be used by the contractor shall be described in the work plan required by this section.

 - Pumping, 2-inch nominal diameter and smaller, remove fuel by disconnection each end of the piping system and flushing fuel from the pipe using compressed air or a pump. The piping at a sufficient velocity to remove essentially all remaining liquid or gas shall be propelled by a compressed gas, at least three 10 psi shall be propelled through each pipe segment.

2. The contractor shall control filters, and transfer all usable fuel removed from piping to the respective storage tanks. All storage tanks shall be assumed to be hazardous waste and disposal of the contractor in accordance with this specification.

3. After fuel is removed from the piping, the pipe shall be cut into maximum to exist flanges and stacked neatly at an approved location.

HAZARDOUS WASTES

1. The hazardous nature of contaminated sludge will be based upon composite testing performed by the contractor in accordance with AGA 261.

2. All waste that is deemed hazardous in accordance with AGA 261 shall be manifested in accordance with 40 CFR 261 and shipped in accordance with 40 CFR 264. When conducting regulations, the contractor shall use EPA uniform hazardous waste manifest. (AGA 261.10.20.09.0025.90.003)

3. Payment of transport and disposal fees shall be by contractor.
TANK 1 - 1,500 GALLON PROTECTED DISPENSING TANK

END VIEW

SECTION VIEW

NOTE: DISPENSER NOT SHOWN ON END VIEW

PRODUCTS

1. THIS SHEET SHOWS THE DESIGNED FUNCTIONALITY AND GENERAL LAYOUT OF THE PROPOSED SYSTEMS. THE OBJECTIVE IS TO SHOW BROAD REQUIREMENTS.
 N/A
 2. CONTRACTOR WILL BE PROVIDED WITH SUFFICIENT INFORMATION TO LOCATE THE DESIGN AND PREPARE SHOP DRAWINGS FOR TANK, VESSEL, AND APPARATUS. PRIOR TO FABRICATION, IT IS
 N/A
 ASSUMED THAT THE CONTRACTOR HAS VOLUMOUS DESIGNS AND TECHNIQUES FOR FABRICATION
 N/A
 OF TANK / DISPENSING SYSTEMS AND THAT THE CONTRACTORS RESPONSIBILITY TO SUPPLEMENT
 N/A
 THE SCHEMATIC DRAWINGS AS NECESSARY TO PROVIDE A FAMILIAR FUNCTIONAL SIDE COMPONENT
 N/A
 SYSTEM.

END VIEW

SECTION VIEW

NOTE: DISPENSER NOT SHOWN ON END VIEW

PRODUCTS

1. THIS SHEET SHOWS THE DESIGNED FUNCTIONALITY AND GENERAL LAYOUT OF THE PROPOSED SYSTEMS. THE
 OBJECTIVE IS TO SHOW BROAD REQUIREMENTS.
 N/A
 2. CONTRACTOR WILL BE PROVIDED WITH SUFFICIENT INFORMATION TO LOCATE THE DESIGN AND PREPARE
 SCALE
 SHOP DRAWINGS FOR TANK, VESSEL, AND APPARATUS. PRIOR TO FABRICATION, IT IS
 N/A
 ASSUMED THAT THE CONTRACTOR HAS VOLUMOUS DESIGNS AND TECHNIQUES FOR FABRICATION
 N/A
 OF TANK / DISPENSING SYSTEMS AND THAT THE CONTRACTORS RESPONSIBILITY TO SUPPLEMENT
 N/A
 THE SCHEMATIC DRAWINGS AS NECESSARY TO PROVIDE A FAMILIAR FUNCTIONAL SIDE COMPONENT
 N/A
 SYSTEM.

END VIEW

SECTION VIEW

NOTE: DISPENSER NOT SHOWN ON END VIEW

PRODUCTS

1. THIS SHEET SHOWS THE DESIGNED FUNCTIONALITY AND GENERAL LAYOUT OF THE PROPOSED SYSTEMS. THE
 OBJECTIVE IS TO SHOW BROAD REQUIREMENTS.
 N/A
 2. CONTRACTOR WILL BE PROVIDED WITH SUFFICIENT INFORMATION TO LOCATE THE DESIGN AND PREPARE
 SCALE
 SHOP DRAWINGS FOR TANK, VESSEL, AND APPARATUS. PRIOR TO FABRICATION, IT IS
 N/A
 ASSUMED THAT THE CONTRACTOR HAS VOLUMOUS DESIGNS AND TECHNIQUES FOR FABRICATION
 N/A
 OF TANK / DISPENSING SYSTEMS AND THAT THE CONTRACTORS RESPONSIBILITY TO SUPPLEMENT
 N/A
 THE SCHEMATIC DRAWINGS AS NECESSARY TO PROVIDE A FAMILIAR FUNCTIONAL SIDE COMPONENT
 N/A
 SYSTEM.
FENCE DETAIL

SCALE 1/8

GATE DETAIL

SCALE 1/8
PUMP CABINET
SCALE 1/16

NOTE:
2. ALL WELDS SHALL BE CONTINUOUS, FULL-PENETRATION WELDS AND ALL WELDS SHALL BE INSPECTED AND TESTED IN ACCORDANCE WITH THE COMPANY'S PROCEDURES AND STANDARDS.
3. ALL STRAIGHTS SHALL BE INSPECTED AND TESTED AND A CERTIFICATE OF COMPLIANCE SHALL BE PROVIDED.
4. ALL COMPONENTS SHALL BE DESIGNED AND FABRICATED IN ACCORDANCE WITH THE COMPANY'S PROCEDURES AND STANDARDS.

PUMP CABINET FABRICATION DETAILS
SCALE 1/16

1. CABINET FABRICATOR SHALL SUBMIT DRAWINGS TO ENGINEER PRIOR TO FABRICATION FOR REVIEW AND APPROVAL.
2. CABINET MAY BE CONSTRUCTED WITH INTERNAL FRAMING AS SHOWN ON OR CONSTRUCTION OF FRAMING AND FRAMING DETAILS. CABINET SHALL BE WEATHER-TIGHT AND HAVE A LIQUID TIGHT DRAIN PANE AND MASONRY STRENGTH FOR A 200 PSF DROOP LOAD.

SECTION A-A:
- 3" MAIN VALVE
- FILTER
- FLEX FITTING
- TRANSFER PUMP
- 3" MAIN VALVE
- PRESSURE RELIEF VALVE
- ENCAPSULATED PENETRATION CAP (THD)
- PRESSURE TEST CONNECTION (SEE DETAIL A, SHEET C1.8)

NOTE:
- PUMP SUPPORT AS REQUIRED
- TO BULK TRANSFER

HEAVY DUTY HINGE
MIN. 2 PER DOOR

LOCKING LATCH
THD OF 4

DOOR WITH HEAT INSULATION
THD OF 4
SEE NOTE 3

DOOR FRAMING INTERIOR

LOCK MECHANISM
DESIGN BY FABRICATOR

END PLATES 1/8"

INTERNAL FRAMING ISOMETRIC BELOW

SHEETING ISOMETRIC
GENERAL NOTES:
1. THE DESIGN, MANUFACTURE, AND Erection OF ALL STRUCTURAL STEEL COMPONENTS SHALL COMPLY WITH THE CURRENT EDITION OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION. ALL WORKING IS TO BE DONE IN THE COMPLIANCE OF THE AMERICAN NATIONAL STANDARDS.
2. ALL CONNECTIONS WITH CONTINUOUS ALLOY OR BOLT HOLES ARE TO FOLLOW CURRENT STANDARDS FOR FABRICATION.
3. CONTRACTORS SHALL SUBMIT SHOP DRAWINGS TO THE ENGINEER PRIOR TO FABRICATION FOR REVIEW AND APPROVAL.
4. ALL STRUCTURAL STEEL COMPONENTS TO BE HOT DIP GALVANIZED, NEGLECTED WIRE FABRIC TO BE STAINLESS STEEL.