Date: May 16, 2016

Project: Bulk Fuel Upgrade Project On behalf

of The City of Shishmaref, Alaska

Solicitation No.: 16004

Addendum No. One

TO ALL PLANHOLDERS:

The enclosed addendum amends the bid documents for the above referenced Project.

Acknowledgment of this addendum is required on the Bid Submittal. Failure to do so may subject the proposer to disqualification.

Sincerely,

Rich Wooten, CDT, CPSM Contract Compliance Specialist

ADDENDUM TO THE BID DOCUMENTS	Page Number	No. of Pages
Addendum No. ONE	Date Addendum Issued:	May 16, 2016
Issuing Office	Previous Addenda Issue	d
Rich Wooten, CDT, CPSM		
Alaska Energy Authority	None	
813 W Northern Lights Blvd Anchorage, AK 99503		
Phone: (907) 771-3019 Fax: (907) 771-3044		
Project: Bulk Fuel Upgrade Project On behalf of The City	Date and Hour Quotes D	ue: May 23, 2016 at 2:00 p.m.,
of Shishmaref, Alaska	prevailing Anchorage time.	
Solicitation No.: 16004		

NOTICE TO BIDDERS:

Bidders must acknowledge receipt of this addendum prior to the hour and date set for proposal due date by one of the following methods:

(a) By acknowledging receipt of this addendum on the proposal form submitted.

(b) By email or telefacsimile which includes a reference to the project and addendum number.

The bid documents require acknowledgment individually of all addenda to the drawings and/or specifications. This is a mandatory requirement and any proposal received without acknowledgment of receipt of addenda may be classified as not being a responsive bid. If, by virtue of this addendum it is desired to modify a proposal already submitted, such modification may be made by email or telefacsimile provided such an email or telefacsimile makes reference to this addendum and is received prior to the opening hour and date specified above.

The Bid documents for the above project are amended as follows (All other terms and conditions remain unchanged):

GENERAL – QUESTIONS & ANSWERS

- 1) **Q:** Was there a Geotechnical report done in 2002 with the first Conceptual Design Report?
 - **A:** Yes, the geotechnical report from the 2002 Conceptual Design Report is attached (attachment 1, thirteen pages). Note that the report recommends stripping off all organics and allowing the in-place frozen sand to thaw to a depth of at least 3-feet. The contract document requirements differ from the recommendations in the report. The frozen in-site material shall be removed and replaced with thawed, classified fill as shown on the contract drawings.
- 2) **Q**: Will the Pre-bid meeting sign-in sheet be available for review?
 - **A:** Yes, attached (attachment 2, one page).

BID AND CONTRACT REQUIREMENTS

- 3) **Section 00800 Supplemental Conditions, SC 9 Special Damages:** Replace SC 9 in its entirety with the following paragraphs:
 - A. Contractor shall coordinate construction activities with regional barge fuel companies as well as affected community entities (Corporation, City, AVEC, school district) as necessary to avoid conflicts. Contractor shall request fuel delivery timelines and insure that all barge headers and fill pipeline assemblies affected by the project (including all piping, valves, fittings, etc) are fully functional for receiving fuel during scheduled delivery times. In the event that the actions of the contractor result in additional fuel delivery related charges (such as fuel barge delay/standby time, cost for utilizing barge transfer hose, etc.) the Contractor shall be responsible for paying the additional delivery costs.
 - B. In the event that the actions of the contractor prevent delivery of fuel that was ordered by one or more project participants Contractor shall take immediate action to supply the amount of fuel ordered

Page **2** of **2** May 16, 2016 Addendum No. 1

at no additional cost to the project. The entity receiving fuel from the Contractor shall reimburse the Contractor based on the barge contract price (FOB Shishmaref). In the event that fulfilling the order requires air transport of fuel, the Contractor shall be financially responsible for the difference in transportation costs (air delivery versus barge delivery).

- C. The contractor shall coordinate with local fuel retailers to schedule outages necessary for construction. Outages shall not last more than three consecutive days. In the event that the actions of the contractor result in an unscheduled outage or an outage that lasts longer than three consecutive days, the contractor shall pay the Owner of the dispensing facility at the rate of \$500 per day until such time as the dispensing facilities are back on line.
- 4) **Section 15191 Fuel Piping System, 1.03.B.2:** Replace 1.03.B.2 in its entirety with the following paragraph:
 - 2. Operating temperature range: -20 degree F to 120 degree F.
- 5) **Appendix A, Shishmaref BFU Plan Set:** Replace sheet C7 with the attached revised sheet C7 (attachment three, one page).

END OF ADDENDUM

Duane Miller & Associates

Arctic & Geotechnical Engineering

1041 E. 76th Avenue Anchorage, Alaska 99518-3215 (907) 644-0510, fax 644-0507

May 15, 2002

PDC Inc. 1231 Gambell St Anchorage, AK 99501

Attention:

John Stricklan, P.E.

Subject:

Geotechnical Exploration

AVEC Fuel Tank Farm and Power Plant

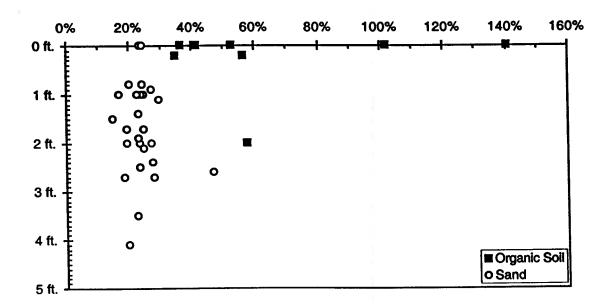
Shishmaref, Alaska DM&A Job No. 4191.02

This letter presents the results of the geotechnical exploration for the foundation design for the proposed fuel tank and power plant in Shishmaref. This review was conducted in accordance with our proposal to PDC dated of January 23, 2002. Our report to PDC dated November 20, 2001, discussed the expected soil conditions based on existing data and presented preliminary conclusions regarding foundation design.

The power plant and fuel tank farm will be located south or southwest of the school at one of two alternative sites as shown on Plate 1. Based on our November report, we expect the tanks to be supported at-grade on earthen embankments with perimeter steel dikes. The power plants will be the standard AVEC modular units with relatively stiff floor framing.

Field and Laboratory work

We explored the subsurface conditions at the two sites by drilling and sampling eight borings on March 4 through 6, 2002. The holes were drilled to depths of 2 to 4 feet deep using a small auger drill (an Acker Soil Mechanic) and by drive sampling. Mr. Michael McKamey, an engineer with Golder Associates, was on site to sample and log the materials encountered in the holes. Mr. McKamey also collected samples for environmental screening. The results of the environmental screening were presented in Golder Associates' report dated March 26, 2002. A bulk sample of the local fill material was also collected during the field trip. Figure 1, the site plan from Golder's report follows this report and shows the locations of the borings.


The samples were returned to Anchorage. The results of analytical testing for hydrocarbons were presented in Golder Associates' report. Samples were also returned to DM&A's laboratory. The samples were reexamined to confirm the field classification and tested for geotechnical properties such as moisture content, salinity, gradation and compacted density. The compacted density of the local sand was determined using a Harvard Miniature compaction apparatus.

We also tested the sand for the effectiveness of treatment with Portland cement. Samples of sand were mixed with 6%, 8%, and 10% Type III Portland cement by dry weight, molded into cylinders using the Harvard Miniature compaction mold and allowed to cure in a sealed container with excess moisture. After a week the samples were examined and tested for cohesiveness by pricking the sample with a small pick. Significant strength was only observed in the sample with 10% cement added to the sand.

The boring logs are presented on Plates 2 through 5. The soils have been classified in accordance with the Unified Soil Classification system described on Plate 6. The results of the geotechnical testing are summarized on the logs of the borings and on the Sample Summary, Plate 7. The results of the particle size analysis are shown on Plate 8. The results of the compaction test on the sand is presented on Plate 9.

Site and subsurface conditions

Shishmaref is on Sarichef Island, which is a segmented portion of a long narrow barrier spit trending northeast along the Chukchi Sea coast and is roughly four miles long and one mile wide. Sarichef Island is composed of beach sand. The sand is fine-grained and is subject to erosion by wind and wind-driven tides and waves. Shishmaref is in the Transitional Climatic Zone of Alaska, with summer temperatures moderated by the influence of the Arctic Ocean, and arctic cold when the ocean water freezes in November.

The conditions that we found in the borings fit well with the past explorations on the island. A surface organic layer was found at seven of the boring locations; no organic layer was present at Boring GAI-02-2. At the other holes, the organic material was found to depths of 0.8 to 2.6 feet. The organic material is underlain by uniform, fine grained sand to the depths explored. The

sand has varying amounts of silt and is occasionally classified as a silty sand. As shown in the preceding plot, the sand has an average moisture content of 25% and only one of the sand samples had a moisture content greater than 30%. The highest moisture content in the sand, 47%, was near the surface of the permafrost layer, and the sample contained excess ice.

All of the materials were frozen, but based on the degree of ice bonding, the surface of the permafrost appears to be at depths of 2 to 4 feet. The greatest depth to permafrost is at Boring GAI-02-2 where the organic layer is missing.

Based on previous work at the village, the sand is expected to extend to considerable depth. The base of the permafrost is also expected to be deep. Local groundwater is perched above permafrost and was noted during the airport study at ranging from the surface to five feet below the surface.

Material Sources

Sand is the only construction material at Shishmaref. Mr. McKamey visited a material site about 1/4-mile northeast of the village. Fine sand was collected and returned to the laboratory. As shown on the particle size analysis, Plate 8, 100% of the collected sample is finer than the #40 sieve size and less than 1% was finer than the #200 sieve. The compaction test on the sand showed the material has a maximum dry density of 100 pounds per cubic foot (pcf).

Conclusions and Recommendations

The conclusions in our preliminary letter of November 20, 2001, still appear to be suitable for the design of the fuel tank and power plant facility. As assumed in November, the site for the new fuel tanks and power plant is underlain by a layer of organic soil over sand with some intervening massive ice and icy sand layers. If the facility is constructed and the icy soil melts, unacceptable settlements will occur. The sand sample with a moisture content of 47% would settle about 2 inches per foot of thaw.

A cost effective method to reduce the risk of thaw settlement is to remove the near surface icy soils and develop a compacted layer of sand fill under the tank farm and power plant. The following procedure is recommended for development of the site.

- The surface organic soils should be stripped and removed from the site.
 Stripping depths are expected to average about 15 inches and might be as deep as 30 inches or greater.
- The top 1 foot of sand below the organics should be stripped from the grading area and stockpiled and allowed to thaw.
- Thaw should be allowed to progress at least 3 feet into the sand below the stripping level. The thawed sand should then be compacted. The hole should be backfilled with properly compacted sand.

Water flowing into the excavation should be controlled and removed by perimeter ditches and sumps and pumps. The thawed sand must be kept dry enough so that proper compaction can be achieved. The required depth of thaw should be verified by digging test pits in the work area.

After fill placement and compaction is completed, the total thickness of compacted material will be about 6 feet. The tanks, containment dike and power plant units can be supported on the compacted sand fill. Even if thaw progresses deeper than the base of the initially thawed material, the overlying compacted sand fill will help reduce any effects of deeper differential settlements. Long term settlements are expected to be less than 2 inches.

The natural sand is fine grained and provides a poor bearing surface and is subject to erosion by wind or water. Consequently, the sand will be treated with Portland cement. The cement treated sand will have a higher allowable bearing capacity and will be resistant to wind erosion. A 10% addition of Type III Portland cement will bind the material adequately for strength and erosion resistance. A 10% mixture is equal to 10 pounds of Portland cement per cubic foot of sand. The sand and cement should be thoroughly mixed at a field moisture content of about 20% and then compacted in thin lifts.

With a cement treated surface, the tanks or powerplant units can be supported on timber sills bearing on the cement treated sand. The allowable bearing pressure is 3,000 psf for total design load for a 12-inch wide timber sill bearing on a cement treated sand layer that is at least 12 inches thick.

The overexcavation and compaction of the sand and the cement treatment should be inspected by an experienced engineer. If conditions are encountered that are different than those expected from this inviestigation, we should be notified so that our recommendations can be changed if necessary.

Very truly yours,

Duane L. Miller, P.E.

Attachments:

Plate 1

Site Plan, Golder Associates

Plates 2 through 5 Logs of Borings

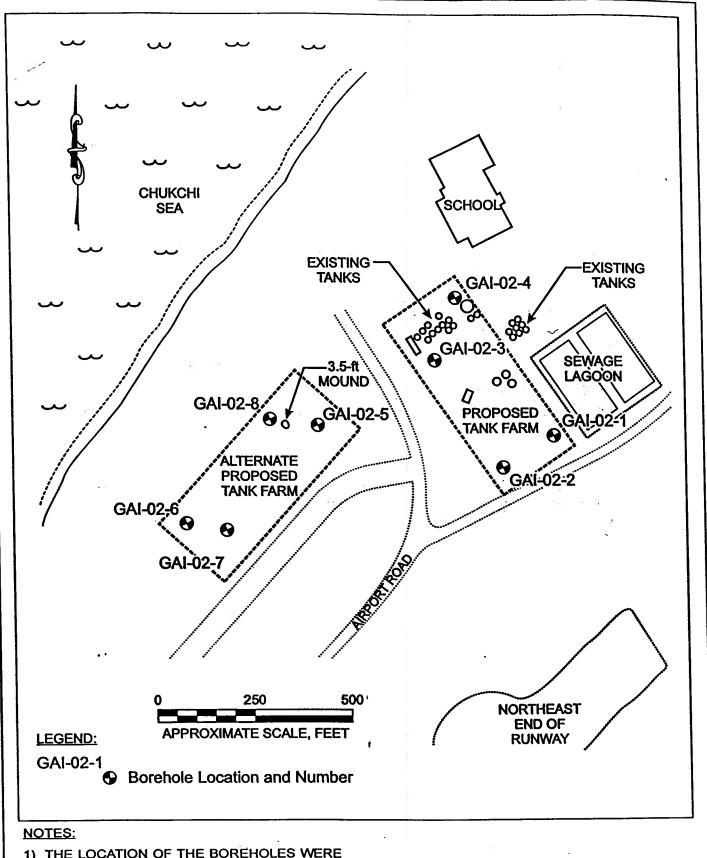
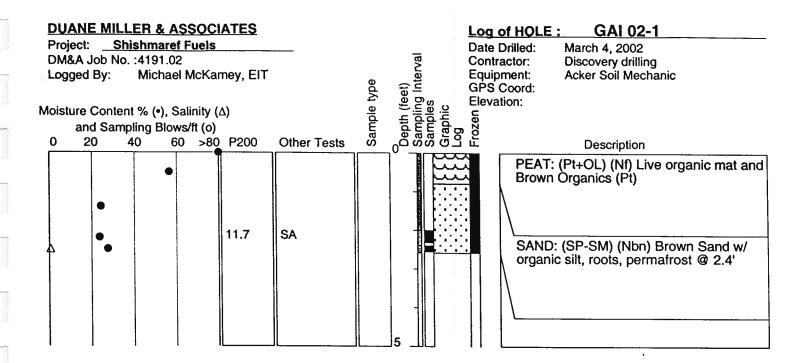
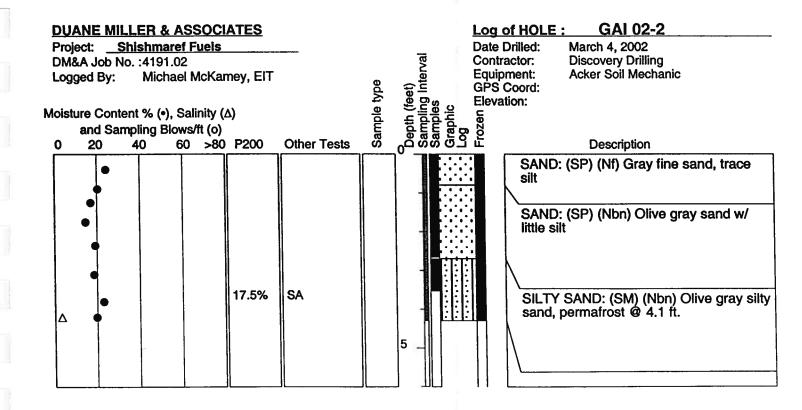

Plate 6 Plate 7 Soil Classification System Summary of Samples

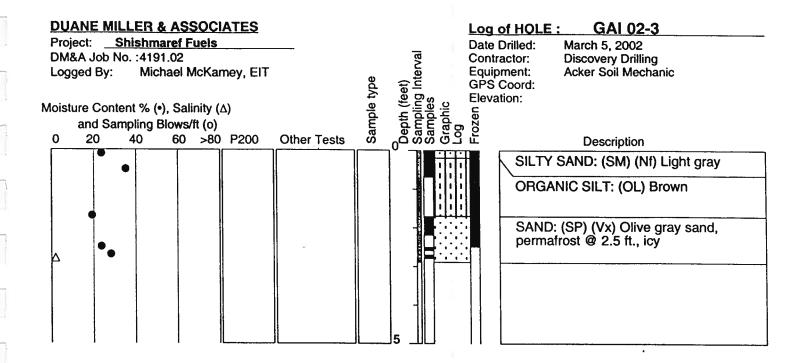
Plate 8

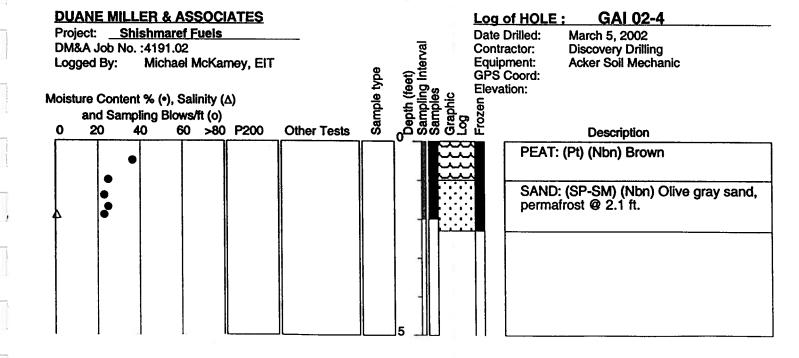
Particle Size Data

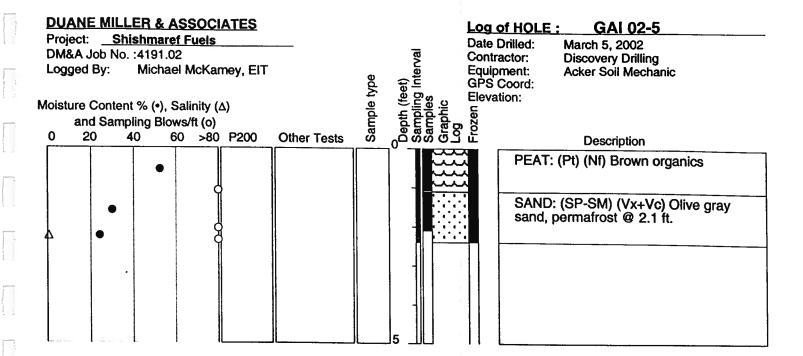

Plate 9

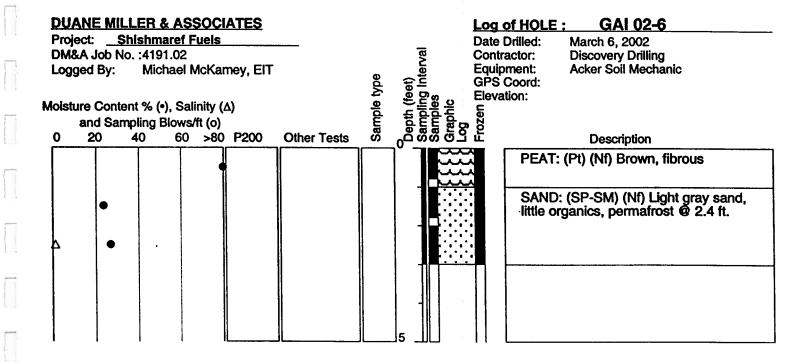

Compaction Test Data

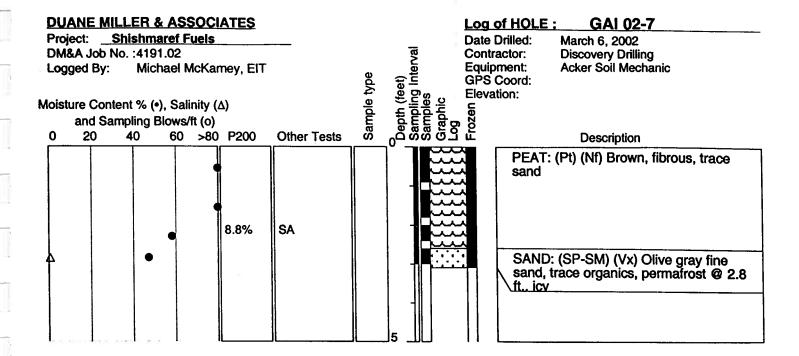
THE LOCATION OF THE BOREHOLES WERE FIELD LOCATED AND SHOULD BE CONSIDERED APPROXIMATE.
SITE DRAWING BASED ON SITE PLAN FROM "ALTERNATE BULK FUEL UPGRADE CONCEPTUAL DESIGN REPORT" COMMUNITY FUEL SYSTEM FIGURE, PDC, DECEMBER 2001.

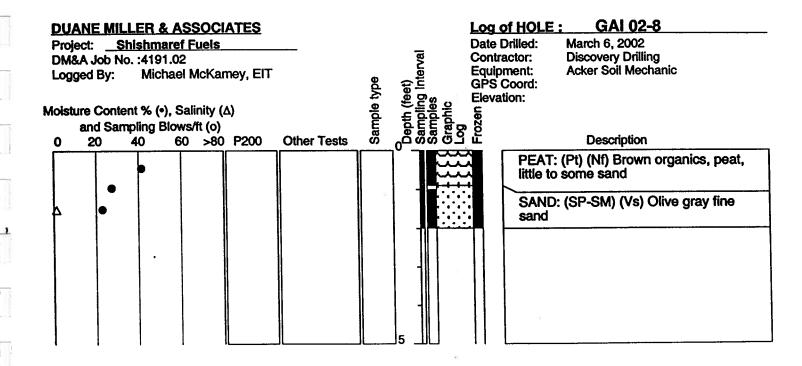

Figure 1 SITE PLAN **BOREHOLE LOCATIONS** DUANE MILLER & ASSOC. / SHISHMAREF BULK FUEL / AK




Job No.: 4191.02 Date: April 2002




Job No.: 4191.02 Date: April 2002 LOG of BORINGS GAI 2-3 & GAI 2-4 Shishmaref Fuels Shishmaref, Alaska



Job No.: 4191.02 Date: April 2002

Job No.: 4191.02 Date: April 2002

MAJOR DIVISIONS			SYM	BOL	TYPICAL NAMES		
,		Clean gravels with little or no fines	GW		Well graded gravels, sandy gravel		
GRAVELS More than half of the coarse fraction is		(<5%)	GP		Poorly graded gravels, sandy gravel		
COARSE GRAINED SOILS	larger than #4 sieve size, > 4.75 mm.	Gravels with more than 12% fines	GM		Silty gravels, silt sand gravel mixtures		
AAINE 1 #200		1101 1270 III 103	GC		Clayey gravels, clay sand gravel mixtures		
SE GF ger tha	Clean sands		with little or no		SW		Well graded sand, gravelly sand
SANDS W S SANDS More than half of the coarse fraction is smaller than #4 sieve	fines (<5%)	SP		Poorly graded sands, gravelly sand			
smaller than #4 sieve size < 4.75 mm.		Sands with more than 12% fines	SM		Silty sand, silt gravel sand mixtures		
		uidii 12% iiiles	sc		Clayey sand, clay gravel sand mixtures		
S _{trm}	Plasticity Chart	· Chart			Inorganic silt and very fine sand, rock flour		
SOIL leve, 7		SILTS and CLAYS Liquid limit less than 50	CL		Inorganic clay, gravelly and sandy clay, silty clay		
# Fine GRAINE % finer than #20 Plasticity inde	× 40 CH		OL		Organic silts and clay of low plasticity		
	asticity WH	CII TC and CI AVO	мн		Inorganic silt		
	0 50	SILTS and CLAYS Liquid limit greater than 50	СН		Inorganic clay, fat clay		
X	Liquid Limit		ОН		Organic silt and clay of high plasticity		
HIGHLY ORGANIC SOILS			Pt		Peat and other highly organic soil		

KEY TO TEST DATA

Dd = Dry Density (pcf) TC = Thaw Consolidation TCf = Thaw Consolidation (field) LL = Liquid Limit PL = Plastic Limit PI = Plastic Index SpG = Specific Gravity SA = Sieve Analysis MA = Sieve and **Hydrometer Analysis** OLI = Organic Loss TXUU = Unconsolidated **Undrained Triaxial** TXCU = Consolidated **Undrained Triaxial** TXCD = Consolidated **Drained Triaxial** XXX (ΥΥΥ) XXX=(σ1-σ3)/2 YYY=ò3

KEY TO SAMPLE TYPE

Ag = Auger grab
Ab = Auger bulk
Ac = Air chip
Cc = Continuous Core
Ss = 1.4" ID split
barrel w/140 lb.
manual hammer
Sh = 2.5" ID split
barrel w/340 lb.
manual hammer
Sha= 2.5" ID split
barrel w/340 lb.
automatic hammer
Tw = Shelby tube

UNIFIED SOIL CLASSIFICATION SYSTEM

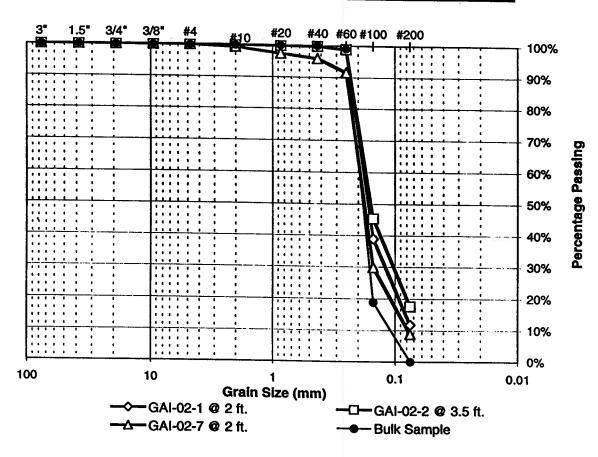
GROUP	ICE VISIBILITY	DESC	SYMBOL		
			friable	Nf	
N '	Segregated ice not visible by eye	Well bonded	No excess ice	Nb	Nbn
		weii borided	Excess microscopic ice	ND	Nbe
			Individual ice crystals or inclusions		
V vis	Segregated ice is visible by eye and is one inch or less	Ice coatings on pa	Vc		
		Random or irregul	Vr		
	in thickness	Stratified or distinct	Vs		
			Uniformly distributed ice		
ICE	Ice greater than one	Ice with soil inclusions		ICE + soil type	
IOL I	inch in thickness	Ice without soil inc	ICE		

ICE CLASSIFICATION SYSTEM

Duane Miller & Associates

Arctic & Geotechnical Engineering Job No.: 4191.02

Date: April 2002

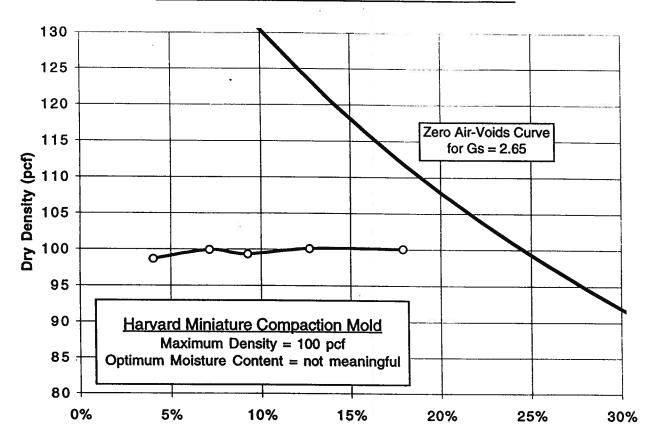

SOIL and ICE CLASSIFICATION
and KEY TO DATA

Shishmaref Fuels
Shishmaref, Alaska

Plate

Boring	Sample Depth	Soil Type (USCS)	Thermal State	Moisture Content	Salinity	Passing #200	Other Tests
GAI-02-1	0.0 ft.	Pt	Frozen	140.6%			-
GAI-02-1	0.2 ft.	Pt	Frozen	56.5%			
GAI-02-1	0.8 ft.	SP-SM	Frozen	24.5%			
GAI-02-1	2.0 ft.	SP-SM	Frozen	23.6%		11.7%	SA
GAI-02-1	2.4 ft.	SP-SM	Frozen	27.7%	0 ppt		
GAI-02-2	0.0 ft.	SP-SM	Frozen	24.4%	••		
GAI-02-2	0.8 ft.	SP-SM	Frozen	20.2%			
GAI-02-2	1.0 ft.	SP-SM	Frozen	17.1%			
GAI-02-2	1.5 ft.	SP-SM	Frozen	14.8%			
GAI-02-2	2.0 ft.	SP-SM	Frozen	19.2%			
GAI-02-2	2.7 ft.	SP-SM	Frozen	18.7%			
GAI-02-2	3.5 ft.	SM	Frozen	22.9%		17.5%	SA
GAI-02-2	4.1 ft.	SP-SM	Frozen	19.8%	3 ppt		
GAI-02-3	0.0 ft.	SM	Frozen	23.7%			
GAI-02-3	0.2 ft.	OL	Frozen	35.2%			
GAI-02-3	1.7 ft.	SP-SM	Frozen	19.3%			
GAI-02-3	2.5 ft.	SP-SM	Frozen	23.6%			
GAI-02-3	2.7 ft.	SP-SM	Frozen	28.2%	2 ppt		
GAI-02-4	0.0 ft.	Pt + ML	Frozen	36.6%			
GAI-02-4	1.0 ft.	SP-SM	Frozen	24.9%			
GAI-02-4	1.4 ft.	SP-SM	Frozen	23.3%			
GAI-02-4	1.7 ft.	SP-SM	Frozen	25.0%			
GAI-02-4	1.9 ft.	SP-SM	Frozen	23.1%	1 ppt		
GAI-02-5	0.0 ft.	Pt	Frozen	52.8%			
GAI-02-5	1.1 ft.	SM	Frozen	29.8%			
GAI-02-5	2.1 ft.	SP-SM	Frozen	24.6%	1 ppt		
, GAI-02-6	0.0 ft.	Pt	Frozen	102.0%			
GAI-02-6	1.0 ft.	SP-SM	Frozen	23.9%			
GAI-02-6	2.0 ft.	SP-SM	Frozen	27.1%	1 ppt		
GAI-02-7	0.0 ft.	Pt	Frozen	709.5%			
GAI-02-7	1.1 ft.	Pt + ML	Frozen	224.8%			
GAI-02-7	2.0 ft.	Pt+SP	Frozen	58.0%		8.8%	SA
GAI-02-7	2.6 ft.	SP	Frozen	47.3%	0 ppt		
GAI-02-8	0.0 ft.	Pt	Frozen	41.9%			
GAI-02-8	0.9 ft.	SP-SM	Frozen	27.4%			
GAI-02-8	1.0 ft.	SP-SM	Frozen	22.9%	1 ppt		

1			53	
Boring =>	GAI-02-1	GAI-02-2	GAI-02-7	Bulk Sample
Depth =>	2.0 ft.	3.5 ft.	2.0 ft.	
3*·=>	100%	100%	100%	100%
1 1/2" =>	100%	100%	100%	100%
3/4" =>	100%	100%	100%	100%
3/8" =>	100%	100%	100%	100%
#4 =>	100%	100%	100%	100%
#10 =>	100%	100%	99%	100%
#20 =>	100%	100%	98%	100%
#40 =>	100%	100%	96%	100%
#60 =>	99%	99%	92%	99%
#100 =>	39%	45%	30%	19%
#200 =>	11.7%	17.5%	8.8%	0.1%
Analysis of Data		1		
D10 size =>	=		0.078 mm	0.108 mm
D30 size =>	0.120 mm	0.102 mm	0.150 mm	0.161 mm
D50 size =>	0.165 mm	0.157 mm	0.177 mm	0.183 mm
D60 size =>	0.180 mm	0.173 mm	0.192 mm	0.195 mm
Coeff. of Uniformity, Cu =		i i	2.47	1.80
Coeff. of Curvature, Cc =	59		1.50	1.23
Gravel (+#4) percentage =	0%	0%	0%	0%
Sand percentage =	88.3%	82.5%	91.2%	99.9%
Fines percentage =	11.7%	17.5%	8.8%	0.1%
Unified Soil Class Symbol =	SP-SM	SM	SP-SM	SP


Project = Shishmaref

Job No. = 4191.02

By = <u>D. Lommel</u>
Date = Apr-02

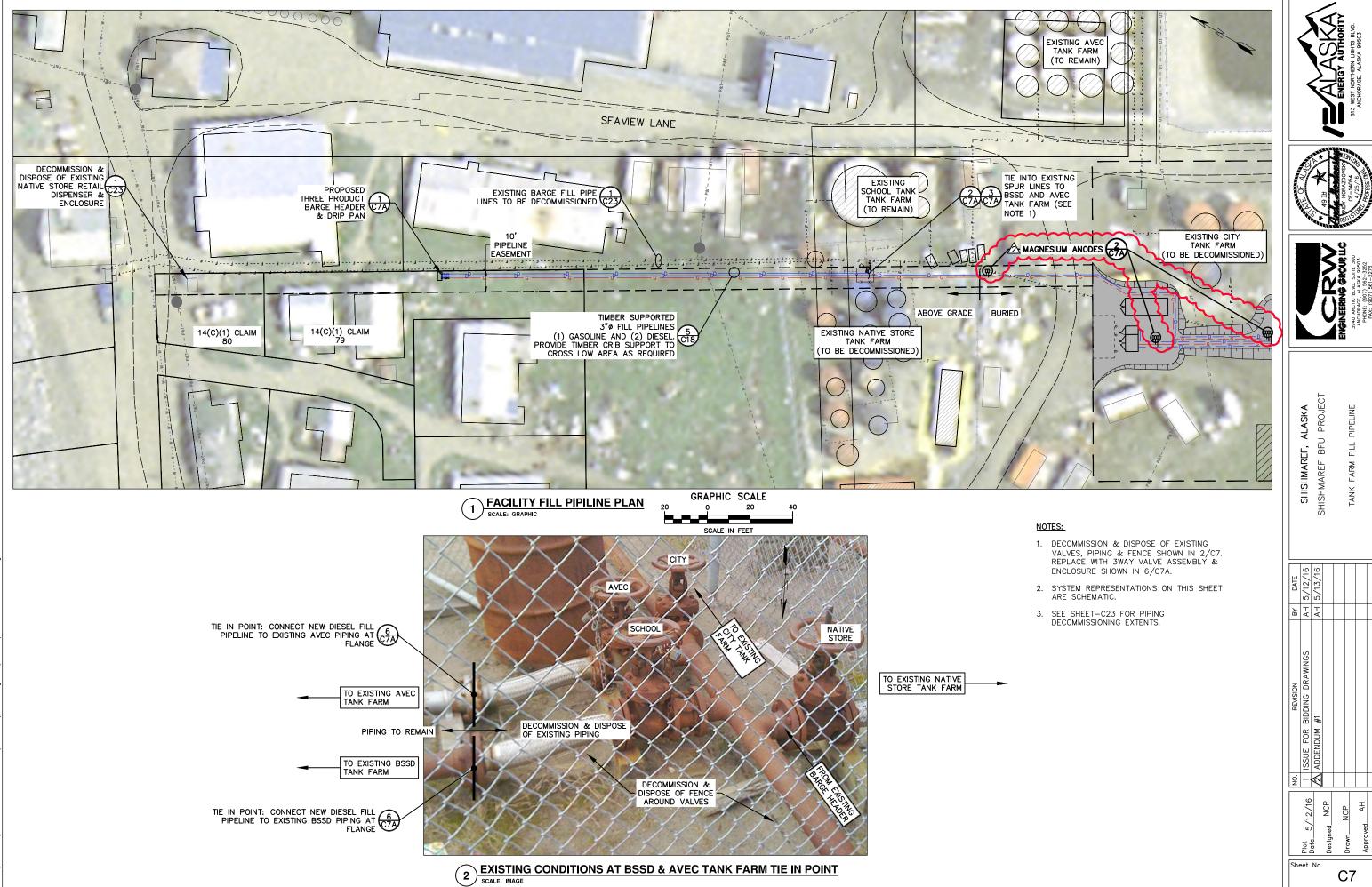
Sample Source = Bulk Sample from borrow site

Sample Description = Fine grained Sand (SP)

Compaction Test

138.1 g	138.1 g	138.1 g	138.1 g	138.1 g
240.7 g	245.1 g	246.6 g	250.9 g	256.0 g
2156	2252	2079	2360	2469
108.9	113.3	115.7	120	125.5
105	106.3	106.6	107.4	107.7
4.0%	7.1%	9.2%	12.7%	17.9%
102.6pcf	107.0pcf	108.5pcf	112.8pcf	117.9pcf
98.6 lb	99.9 lb	99.3 lb	100.1 lb	100.0 lb
0.0 ksf	0.0 ksf	0.0 ksf	0.0 ksf	0.0 ksf
0.0 ksf	0.0 ksf	0.0 ksf	0.0 ksf	0.0 ksf
	240.7 g 2156 108.9 105 4.0% 102.6pcf 98.6 lb 0.0 ksf	240.7 g 245.1 g 2156 2252 108.9 113.3 105 106.3 4.0% 7.1% 102.6pcf 107.0pcf 98.6 lb 99.9 lb 0.0 ksf 0.0 ksf	240.7 g 245.1 g 246.6 g 2156 2252 2079 108.9 113.3 115.7 105 106.3 106.6 4.0% 7.1% 9.2% 102.6pcf 107.0pcf 108.5pcf 98.6 lb 99.9 lb 99.3 lb 0.0 ksf 0.0 ksf	240.7 g 245.1 g 246.6 g 250.9 g 2156 2252 2079 2360 108.9 113.3 115.7 120 105 106.3 106.6 107.4 4.0% 7.1% 9.2% 12.7% 102.6pcf 107.0pcf 108.5pcf 112.8pcf 98.6 lb 99.9 lb 99.3 lb 100.1 lb 0.0 ksf 0.0 ksf 0.0 ksf 0.0 ksf

Plate



May 12, 2016 at 1:00 p.m.

Pre-bid meeting for Bulk Fuel Upgrade Project on behalf of
The City of Shishmaref, Alaska
Invitation to Bid 16104

Please print

Name	Firm	Telephone/Fax	Email	
Gereny Coke	Tikigaq Con		icoke@tikigaq	con
Persel Sal	PM LOGISTICS	261-9400	Jussell. Sallapacam	
Robert Hotho	BCX	344-4490	RHOTHORBEXILE.NET	_
TOM FINCH	EPC	646-5178	THINGH DEPCONSTRUCTO	res, com
KARL HULBE	crw	645-5621	KHULBE @ CRWENG.COM	2.1
Shane Oyster		644-4664	soyster estgincorpor	rated con
Andy Horazdovsky	CRW	646.5946	anhe crueng, com	
Tim Sandstrom	AEA	771-3082	tsandstramo aideason	
Beut lenklin	56W		been kling sku asre	
lich works	AEA (A)DEA	771-2019	Rmoten Daidas org	9
		,		
	, . .			
		•		

