FINAL INSPECTION REPORT

Ketchikan Ship Yard Cathodic Protection Project Ketchikan, Alaska

July 2011

Prepared for: Alaska Industrial Development and Export Authority 813 West Northern Lights Blvd. Anchorage, Alaska 99503

And:

Hattenburg Dilley and Linnell Engineering Consultants 3335 Arctic Boulevard Suite 100

Anchorage, Alaska 99503

Prepared by: URS. 700 G Street Suite 500 Anchorage, Alaska 99501

In association with: **Global Diving and Salvage** 5400 Eielson Street Anchorage Alaska 99518

Table of Contents

EХ	ECUTIVE SUMMARY	1
1.	INTRODUCTION	2
	Existing Structure	2
	Tides	
	Inspection Program	3
	Cathodic Protection Half-Cell Readings and Corrosion	4
	Ultrasonic Thickness Readings	5
2.	FINDINGS	7
	Sheet Pile Cells	7
	North Pier and Dolphins	8
	Main Fender System	10
	Cathodic Protection 1/2 Cell and Ultrasonic Thickness Readings	13
3.	RECOMMENDATIONS	14
	Sacrificial Anodes	14
	Coatings	15
	Sheet Pile Connecting Arcs	16
	Timber Walers	16
	North Dolphin Fender	16
	Dry Dock #2 CP System	16
AI	PPENDICES	17
	Appendix A: Inspection Figures	A
	Appendix B: Dive Reports	B
	Appendix C: Coating Analysis Memo	C
	Appendix D: Rubber Check Valve Catalog Sheet	D
	Appendix E: Coating System Catalog Sheet	E

EXECUTIVE SUMMARY

The July 2011 inspection of the Ketchikan Shipyard Facility included a visual inspection of the waterfront facilities including the sheet pile wharf, North Pier, fender system, and dolphins. It included an above and below water inspection. The inspection was one phase of a cathodic protection project and, as such, was focused on corrosion. The inspection included cathodic protection half-cell readings and ultrasonic thickness readings.

The following is a summary of the findings:

- The majority of the cathodic protection half-cell readings indicated no cathodic protection and active corrosion. The only exceptions were at the new berth which has a sacrificial anode system and at floating dry dock number one which had an impressed current anode system.
- Active corrosion was noted throughout the waterfront. This included heavy rust with layers of black oxide and pitting in places.
- The coating on the sheet pile cells was failing and coming off in sheets.
- There were drain holes in the interconnecting arcs on the sheet pile cell dock. Seawater enters the fill behind these arcs through the drain holes on the high tide and drains from these holes on the low tide. This exchange of fresh oxygenated saltwater is creating a corrosion issue behind the interconnecting arcs.
- The galvanizing on the north pier pipe piles has been consumed and active corrosion was noted on these piling.
- The timber pile system has steel H section walers. These have active corrosion. There are short sections of timber walers between the timber pile groups. Many of these short timber sections were rotten.
- The north dolphin was leaning slightly and appears to have been overloaded and moved slightly out of position.
- The impressed current cathodic protection system on floating dry dock number 2 was turned off. Evidentially this is due to the fact it was sitting on the grounding grid and going dry several times a day. The cathodic protection half-cell readings on the new sheet pile wharf adjacent to this dry dock were depressed and it is probable that the floating dry dock is adding to the load on the new cathodic protection system.
- The existing coating on the sheet pile wharf was tested and found to be generally free of asbestos containing materials (ACM), and had semi-volatile organic compounds (SVOC) and inorganic lead at levels below federal hazardous waste limits.

The following is a summary of the recommendations:

• Install sacrificial aluminum anodes to all of the submerged steel structures including the sheet pile cells and interconnecting arcs, the pipe piling for the north wharf, and dolphins and the walers on the fender system.

- Remove the loose coating on the sheet pile cells with sand or water blasting. Remove all of the coating from the low tide line to the top and recoat this area. We recommend a fast dry spray polyuria coating system that can be immersed shortly after application.
- Install a rubber check valves over the drain holes in the interconnecting arcs to reduce the exchange of seawater behind the sheets.
- Install sacrificial magnesium anodes in the underground area in the interconnecting arcs and in the main sheet pile cells. Install these in groups or in a ground bed configuration to minimize excavation and damage to the pavements and to minimize potential conflicts with existing utilities.
- Replace the short sections of treated timbers walers on the main fender system. Consider plastic lumber for this application.
- Install a new pile foundation for the north dolphin. Drive the main piling deeper and or install fins or other means to increase the capacity of this dolphin.
- Install control circuitry on the impressed current cathodic protection system for dry dock number 2 so that it will operate when submerged and shut off when it goes dry on the grounding grid.

1. INTRODUCTION

Existing Structure

The Ketchikan ship lift facility is located along Tongass Narrows near Carlana Creek. There have been waterfront facilities at the site since the early 1900s including various historical canneries and docks.

The current ship lift facility has been constructed in phases. The sheet pile cells were constructed in 1982 and 1983 for the State of Alaska DOT Vessel Maintenance Facility. This project included dredging and the construction of 15 circular sheet pile cells with connecting arcs. The cells were arranged to form a main wharf face and a submergence berth for a floating dry dock. There is an L shaped concrete cap along the face of the dock that is partially supported by pipe piling. The sheet pile cells and piling were originally coated and protected by an impressed current cathodic protection system. (This system has been shut off and was not in service at the time of the inspection. It seems to have been shut down for a considerable time and it was unclear as to when the last time it was in operation.) The construction of the sheet pile cells included a drain system consisting of a layer of gravel in and around the sheets and uplands and holes cut in the interconnecting arcs of the sheets at about elevation + 5.0 feet.

In 1985 and 1986 the pile supported North Pier was constructed. This pier is about 462 feet long and 43 feet wide. It has 24 bents of piling which include 30 inch diameter by 3/8 inch wall steel plumb piling and 24 inch diameter by $\frac{1}{2}$ inch wall plumb and batter pile groups. The bents are on 20 foot centers and include a concrete pile cap. The deck includes a section of precast concrete tees and a concrete formed, timber decked, utility trench. The pilings were originally hot dip galvanized. This project included the installation of the fender system, the north dolphin / fender, and the dry dock dolphins.

The main face timber fender system includes groups of 3 timber piling connected with a three level steel waler system. The top waler is connected to the deck of the dock with side loaded cylindrical energy units.

In 1986 and 1987 the south berth was constructed. This included a fender system along the south sheet pile cells and two floating docks.

Tides

NOAA publishes the following tidal statistics for Ketchikan:

Highest Observed Water	21.3 feet
High Tide Line	19.4 feet
MHHW	15.4 feet
MHW	14.4 feet
MTL	8.1 feet
MLLW	0.0 feet
Lowest observed water	- 5.2 feet

NOAA reports that tidal currents in the narrows can exceed 1.5 knots

Inspection Program

The scope of work for the 2011 inspection program included:

- A visual inspection of the above and below water portions of the sheet pile cells and connecting arcs.
- A visual inspection of the above and below water portions of the North Pier and dolphins.
- A visual inspection of the above and below water portions of the main fender system.
- Cathodic protection half-cell readings at representative locations.
- Ultrasonic thickness readings at representative locations.

Diving support was provided by Global Diving and Salvage The fieldwork was done July 5, 6, and 7, 2011 under the direct supervision of John C. Daley, P.E., project engineer.

The diving inspection was done using the Association of Diving Contractors International (ADCI) consensus standards as a diving safe practices manual. This manual lists the minimum requirements for personnel and equipment to be used on diving jobs. In general the underwater inspections were performed using a three level approach to as described below:

Level I

A complete swim-through inspection of all identified underwater substructure items. This included visual or tactile inspection of each and every pile and each underwater structural component. In addition, the team visually inspected the above water portion of the

identified substructure items. Two-way communications were used for recording a dialog between the diver and the topside personnel describing the location, marine growth, and general condition of the structure.

Level II

Partial marine growth removal and close up visual and photographic inspection of selected portions of approximately Ten percent of the identified underwater substructure items. This was done in a manner designed to produce a statistically representative sample of the underwater components.

Level III

Non Destructive Testing (NDT) of selected portions of approximately Ten percent of the underwater structures. This was done at areas identified for specific inspections or randomly in a manner designed to produce a statistically representative sample. NDT consists of ultrasonic thickness measurements to determine the remaining wall thickness of the piles. Cathodic Protection ¹/₂ cell readings were also taken as part of the level III inspection.

This three level approach meets or exceeds the guidelines set forth in FHWA manual "Underwater Inspection of Bridges," and the ASCE "Standard Practice Manual for Underwater Investigations."

Cathodic Protection Half-Cell Readings and Corrosion

Cathodic protection (CP) half-cell readings were taken with a silver silver chloride reference cell and a voltage meter. This allowed the inspector to measure the potential of the structure with respect to a reference cell and to use this measurement to evaluate the effectiveness of the cathodic protection system.

Silver / Silver Chloride CP 1/2 Cell

The National Association of Corrosion Engineers (NACE) publishes standards and criteria for cathodic protection. One widely used criteria for adequate CP is to maintain

the structure at -0.850 volts or more negative with respect to a copper copper sulfate reference cell. Copper copper sulfate reference cells are not intended for use in seawater so it is typical to use a silver silver chloride reference cell. There is a correction factor that can be applied to correlate readings taken with a silver silver chloride cell to standards based on a copper copper sulfate cell. The correction factors vary depending on temperature, salinity, resistivity of the medium, and other factors. For the purposes of this inspection an approximate correction factor of 0.050 volts was applied so that a silver silver chloride CP readings of approximately -0.800 or more negative indicates adequate cathodic protection. It is acknowledged that this is not a rigorous correction but should be adequate to evaluate the general condition of the CP system.

Zinc and /or aluminum alloy sacrificial anodes (the most common types used in seawater) typically have a potential in seawater of between -1.000 and -1.100 volts with respect to a silver silver chloride half-cell. Impressed current anodes typically have potentials set to values in the -1.5 volt rage or more positive. (Higher voltages can damage coatings.) It is common to have CP readings approaching these values when the reference cell is held close to an anode. It is also common for the readings to drop off with distance from the anode. CP readings more positive than -0.800 generally indicate inadequate cathodic protection. Bare steel with no CP system will often have potentials less than -0.700. This indicates active corrosion.

Corrosion typically progresses in stages based on the age of the structure and condition of the CP system. Without CP, galvanizing typically lasts 15 to 20 years in seawater. As it nears the end of its service life, patches of bare steel will become exposed, typically covered with light red colored surface rust. Bare steel will first form a layer of red oxide (rust) and then will start to develop a black oxide layer under the surface layer. The black oxide can be associated with loss of section of the steel and with advanced corrosion. Fully active corrosion of bare steel will typically exhibit a hard crusty exterior layer of reddish brown corrosion deposits with thick chalky black oxide underneath. Each of these layers may be over ¹/₄" thick and may come off in small sheets. When the corrosion deposits of this type are removed there will typically be shinny bare steel underneath with pitting and measurable section loss.

Ultrasonic Thickness Readings

An underwater ultrasonic thickness meter was used to measure wall thickness of steel elements. This meter is specially built for underwater applications. The diver cleans an area of the steel piling, removing marine growth and corrosion deposits, and then places the transducer on the cleaned area. The meter gives a visual reading that is reported by the diver and logged by the topside personnel.

The thickness readings can be compared to original wall thickness to determine section loss. It should be noted that there are tolerances for wall thickness in new material from the factory. These vary with the specification for the material but can range up to as much as + 10% of the nominal value.

Underwater Ultrasonic Thickness Meter

There is little published guidance for acceptable levels of section loss. Obviously the consequences of section loss will depend on the application of the member in question. Highly loaded, highly stressed, primary structural members are less tolerant of section loss than lightly loaded, lightly stressed, secondary members. A rule of thumb that has been used previously in industry is that any member with 30% or greater section loss should be repaired or replaced. However, this depends on the application and some members may require repair or replacement prior to 30% section loss.

For this project the following nominal wall thickness are noted from the original design drawings:

Item	Section	Nominal wall thickness
Sheet Pile Cells	PS 28	3/8"
Sheet Pile Arcs	PSX 32	29/64"
Row B & C Piles	30" diameter	3/8"
Row A Piles	24" diameter	1/2"
North Dolphin	24" diameter	1/2"
Dry Dock Dolphins	42" diameter	1/2"
Main Wharf Cap Piles	16" diameter	3/8"
South Wharf Cap Piles	18" Diameter	1/2"

2. FINDINGS

Sheet Pile Cells

The sheet pile cells showed active corrosion, inadequate CP readings, coating failure, and section loss in places.

There were drain holes in the interconnecting arcs between the main cells. Seawater enters these drain holes on the high tides and pours out of these holes on the low tides. This results in an exchange of fresh saltwater that will result in an accelerated corrosion condition.

The impressed current cathodic protection system was not in operation at the time of the inspection and it was unclear as to when the last time was that it was operational.

Interconnecting Arc Note drain hole

Typical main wharf cell

Cell 5 Note coating failure

Typical interconnecting arc

Typical cell at mudline

Typical cell at mudline. Note coating gap

The CP readings on the cells were typically less than 0.600 volts. This indicates extremely active corrosion and no cathodic protection. The corrosion deposits included a red colored outer layer and layers of black oxide underneath.

The coating was failing. The majority of the failure was in the intertidal zone where it was coming off in sheets. Some of the coating was delaminated but still attached. This results in a condition where moisture is trapped behind the coating. If a CP system were present and active, this coating would shield the underlying steel from the CP system and result in pockets of corrosion under the delaminated coating.

The original sheets were only partly coated prior to installation. The portions of the sheets designed to be underground were not coated. However, during installation some of the uncoated sections of the sheets ended up exposed above the mudline. There is active corrosion on these sections of the sheets.

Dry dock number one had CP readings generally over 0.900 volts indicating adequate cathodic protection. There is a functioning impressed current CP system on the structure.

Dry dock number 2 had CP readings from 0.663 to 0.935 volts indicating variable CP potentials with areas that were below standards for cathodic protection. It was reported that the impressed current CP system for this structure was turned off.

The new sheet-pile bulkhead near dry dock number 2 was coated and had a sacrificial anode system. CP readings in the high 0.9 volt to low 1.0 volt range can be expected. Areas adjacent to the dry dock had readings of 0.855 volts. This indicates adequate cathodic protection but a slightly depressed potentially likely due to the added load from dry dock number 2.

North Pier and Dolphins

The galvanizing was consumed on the piling on the North Pier and dolphins. The CP readings were generally less than 0.700 volts and there was active corrosion. In general the galvanizing was 100% consumed below the tide line and there was a small amount of galvanizing remaining above the tide line in places.

Typical North Pier Pile

North Fender Dolphin

North End of North Pier

Typical North Pier Pile

North Dry-dock Dolphin

Typical Marine Growth

Cleaned Pile Galvanizing Gone

Cleaned Pile Galvanizing Gone

The corrosion below the tide line included a thick crusty outer layer of corrosion deposits with a thick chalky layer of black oxide beneath that. The steel under the black oxide layer was shinny and had broad shallow pits.

The north dolphin fender is leaning slightly to the south. There are reports that it was overloaded in a hard berthing and partially straightened out. The original design drawings indicate that the dolphin vertical structural support piling have fins welded to them. The batter pilings do not have fins. The main support pilings are driven to a tip elevation of about 70 feet or about 40 feet of embedment. This type of design relies principally on soil friction to resist the loads. It is unclear what the berthing capacity of the dolphin is but it seems likely that the capacity has been exceeded in service.

Main Fender System

The main fender system has 3 levels of steel H beam walers. The lower 2 walers are submerged on a regular basis with the tides. The 2 lower walers show signs of corrosion. There are no anodes on the fender system. In addition, there are short sections of horizontal timber walers between each 3 pile timber fender group. These timber waler sections are bolted to the steel walers. The majority of the timber waler sections are rotten. This is likely due to the cut ends and drilled bolt hole areas where preservative treatment is missing or thin allowing for rot and marine borers to gain a foothold.

North Pier with fender in background

Fender on North end of North Pier

Fender on South end of South Berth

Top of Fender Main Berth

Typical fender waler

Typical fender waler

Typical fender waler

Typical fender waler

Typical timber waler

Typical timber waler

Location	CP Reading	UT Reading	Comments
	(Volts)	(Inches)	
Bent 1 Row A	0.623	0.485	Active Corrosion
Bent 2 Row A	0.634	0.490	Active Corrosion
Bent 3 Row B	0.625	0.325	Active Corrosion
Bent 4 Row A N Batter	0.631	0.400	Active Corrosion
Bent 5 Row C	0.619	0.335	Active Corrosion
Bent 6 Row A N Batter	0.628	0.470	Active Corrosion
Bent 7 Row B	0.628	0.355	Active Corrosion
Bent 8 Row C	0.622	0.340	Active Corrosion
Bent 9 Row B	0.627	0.330	Active Corrosion
Bent 10 Row A N Batter	0.640	0.470	Active Corrosion
Bent 11 Row B	0.631	0.340	Active Corrosion
Bent 12 Row C	0.631	0.365	Active Corrosion
Bent 13 Row B	0.591	0.350	Active Corrosion
Bent 14 Row B	0.618	0.350	Active Corrosion
Bent 15 Row A	0.629	0.470	Active Corrosion
Bent 16 Row A S Batter	0.623	0.570	Active Corrosion
Bent 17 Row B	0.619	0.340	Active Corrosion
Bent 18 Row C	0.630	0.355	Active Corrosion
Bent 19 Row B	0.619	0.355	Active Corrosion
Bent 20 Row C	0.631	0.340	Active Corrosion
Bent 21 Row B	0.634	0.320	Active Corrosion
Bent 22 Row A S Batter	0.640	0.475	Active Corrosion
Bent 23 Row C	0.638	0.355	Active Corrosion
Bent 24 Row B	0.645	0.330	Active Corrosion
Ramp Support East Pile	0.647	0.480	Active Corrosion
South dry-dock Dolphin Pile 1	0.685	0.485	Active Corrosion
South dry-dock Dolphin Pile 3	0.666	0.475	Active Corrosion
North dry-dock Dolphin Pile 1	0.635	0.510	Active Corrosion
North dry-dock Dolphin Pile 2	0.642	0.485	Active Corrosion
North dry-dock Dolphin Pile 4	0.644	0.475	Active Corrosion
North Dock Dolphin N Batter	0.637	0.475	Active Corrosion
North Dock Dolphin S Batter	0.635	0.485	Active Corrosion
North Dock Dolphin Plumb	0.635	0.460	Active Corrosion
North Dock Dolphin Fender	0.639	0.430	Active Corrosion
Cell 2	0.481	0.485	Active Corrosion
Cell 5	0.564	0.425	Active Corrosion
Arc 5 – 6	0.569	0.355	Active Corrosion
Cell 6	0.573	0.475	Active Corrosion
Arc 6 – 7	0.572	0.395	Active Corrosion
Cell 7	0.569	0.475	Active Corrosion
Arc 7 – 8	0.573	0.375	Active Corrosion
Cell 8	0.547	0.485	Active Corrosion
Arc 8 – 9	0.554	0.360	Active Corrosion

Cathodic Protection ¹/₂ Cell and Ultrasonic Thickness Readings

Cell 9	0.592	0.485	Active Corrosion
Arc 9 – 10	0.553	0.360	Active Corrosion
Cell 10	0.542	0.485	Active Corrosion
Arc 10 – 11	0.584	0.300	Active Corrosion
Cell 11	0.590	0.400	Active Corrosion
Arc 11 – 12	0.594	0.340	Active Corrosion
Cell 12	0.592	0.455	Active Corrosion
Arc 12 – 13	0.586	0.360	Active Corrosion
Cell 13	0.600	0.505	Active Corrosion
Arc 13 – 14	0.535	0.365	Active Corrosion
Cell 14	0.589	0.435	Active Corrosion
Arc 14 – 15	0.582	0.325	Active Corrosion
Cell 15	0.581	0.475	Active Corrosion
Dry Dock #1 NE Corner	1.010	NA	Adequate Cathodic Protection
Dry Dock #1 NW Corner	0.906	NA	Adequate Cathodic Protection
Dry Dock #1 SE Corner	0.956	NA	Adequate Cathodic Protection
Dry Dock #1 SW Corner	0.967	NA	Adequate Cathodic Protection
Dry Dock #2 NE Corner	0.935	NA	Adequate Cathodic Protection
Dry Dock #2 NW Corner	0.832	NA	Adequate Cathodic Protection
Dry Dock #2 SE Corner	0.825	NA	Adequate Cathodic Protection
New bulkhead	0.855-0.965	NA	Adequate Cathodic Protection

3. **RECOMMENDATIONS**

Sacrificial Anodes

It is recommended that sacrificial anodes be placed on the pipe and sheet piling as well as on the steel walers for the fender system. It is recommended that "Galvalume" aluminum alloy anodes be used in seawater. These should have an energy capacity not less than 1150 amp-hour per pound, a consumption rate of not more than 7.6 pounds per amp year and an open circuit potential of more than -1.05 volts versus a silver/silver chloride electrode.

It is recommended that anodes be welded directly to the piling or structure to AWS-D3.6 Class B standards by a diver. Welding the anodes directly to the piling will provide a low resistance electrical bond which is required for proper operation of the anode. Once installed this type of anode system is low maintenance and cannot be turned off as is the case with an impressed current system.

According to NACE standards typical current density for cathodic protection on the US West Coast is in the range of 7 to 10 milliamps of current per square foot of bare steel. Anodes should be designed based on an estimate of the square feet of bare steel, the anticipated service life (typically 20 or 25 years), and an anticipated consumption rate.

Using a value of 7.6 pounds per amp per year the size (weight) of an anode can be calculated to provide protection of a given surface area for a given service life. Reference NACE RP 0176-83 and NACE RP0387-99 for more information.

It is recommended that magnesium anodes be installed underground behind the sheet pile connecting arcs. These anodes typically come bundled in a conductive backfill medium. The assembly is similar to a potted plant. Because there is typically a burlap bag that holds the medium and anode they are often referred to as "Mag-Bag anodes". The magnesium anodes are buried in the fill behind the structure and electrically connected to the sheets with a wire and Cad-Weld connection. These anodes will provide cathodic protection to the underground portion of the sheet pile arcs. If desired magnesium anodes can be placed in the main sheet pile cells as well.

Note that the placement of underground anodes will require the carful location of underground utilities as well as pavement repair after installation. Due to this it may be desirable to place groups of sacrificial anodes together in a ground bed configuration as a means to minimize excavation and conflicts with other utilities.

It should be noted that sacrificial anodes have a limited current output and therefore have a limited range or distance of protection. It is difficult to get significant current at distances over about 15 feet from the anode. Therefore sacrificial anodes should be placed relatively close to the area requiring protection.

Coatings

The cathodic protection system will not protect the steel above the tidal or in splash zone. The only way to effectively protect this area is through the use of coatings or galvanizing. Since a large percentage of the existing coating in this area has failed it is important for the long-term service life of the structure that the coating be replaced.

There are a number of systems that can be considered, including various marine epoxies, urethanes, and spray metalizing. Because the tide zone area will be submerged several times a day any coating system applied to this area must cure to a point where it can be submerged in only a few hours after application. This narrows the selection of applicable coatings dramatically. We recommend that the existing piling be coated with a poly-urea or spray metailzing. Both of these systems will cure almost immediately upon application and can be submerged in minutes.

For a poly-urea system we recommend a Sherwin Williams Envirolastic AR425 be applied. 60 to 80 mils is recommended. This product requires a special applicator that mixes a two part product at the spray gun nozzle and dries to the touch in under a minute. Surface preparation should be SSPC SP-10 near white sand blast.

Spray metalizing is a field applied sacrificial coating of zinc and or aluminum. It requires a sand blast surface preparation and application of molten metal. This results in a coating that is similar to hot dip galvanizing. For spray metalizing we recommend that the system be specified in accordance with AWS C2.23M and C2.23:2003, or NACE No. 12, or

SSPC - CS 23.00.

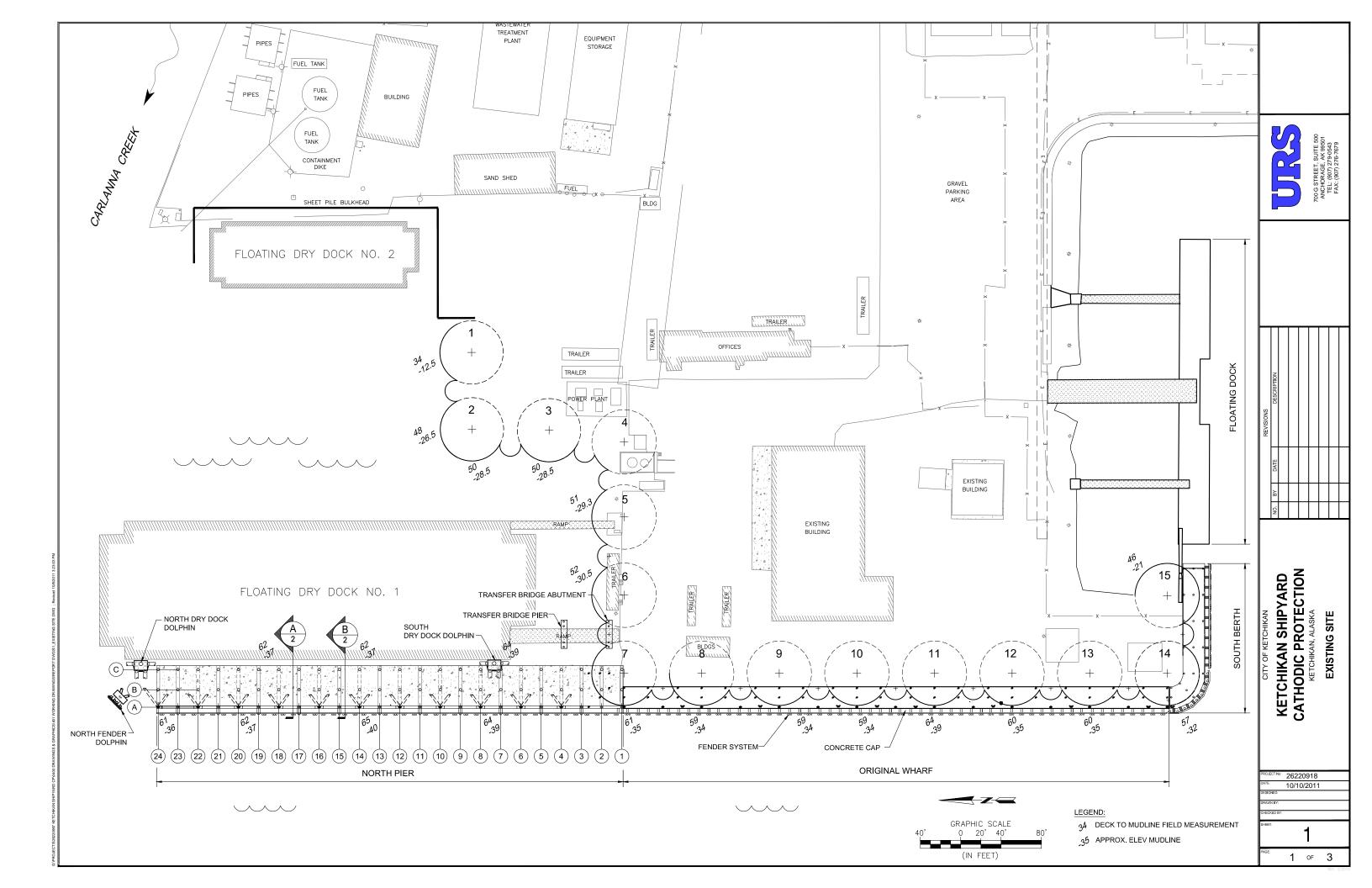
In-place coating work under a dock is labor intensive and therefore, costly. One of the most costly operations is surface preparation which will typically include sand or water blasting. It is likely that and sand blasting operation at the ship lift will require containment and recovery of the blasting media and removed paint ships.

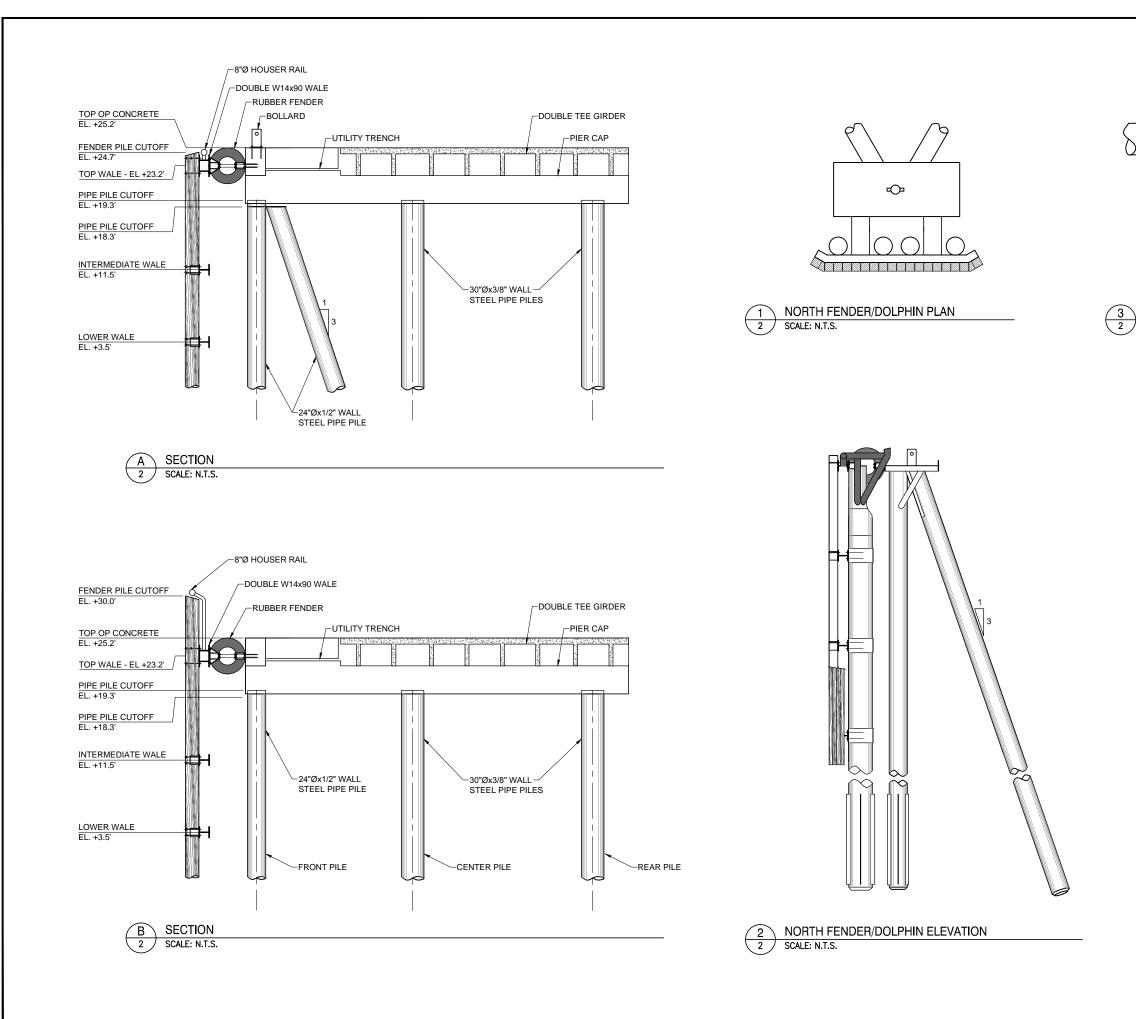
Sheet Pile Connecting Arcs

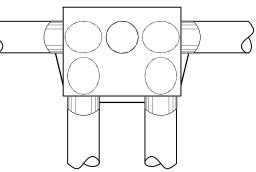
It is recommended that the drain holes in the sheet pile connecting arcs be fitted with rubber check vales to reduce the exchange of seawater behind the sheets. This will require welding a pipe stub over the holes and attaching the check valve to a flange or other fitting on the pipe section. There are commercially available products for this application such as J&S Headflex Duckbill check valves.

Timber Walers

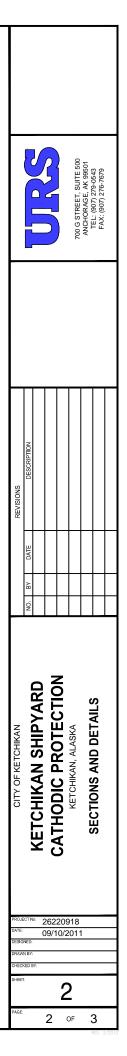
It is recommended that the short sections of timber walers between the fender pile groups be replaced. Consideration should be made to using synthetic polyethylene lumber products for the replacement sections. This will alleviate the issue with rot and marine borers attacking the cut ends and field drilled bolt hole areas. If timber is used it should be cut and drilled prior to treatment with preservatives.

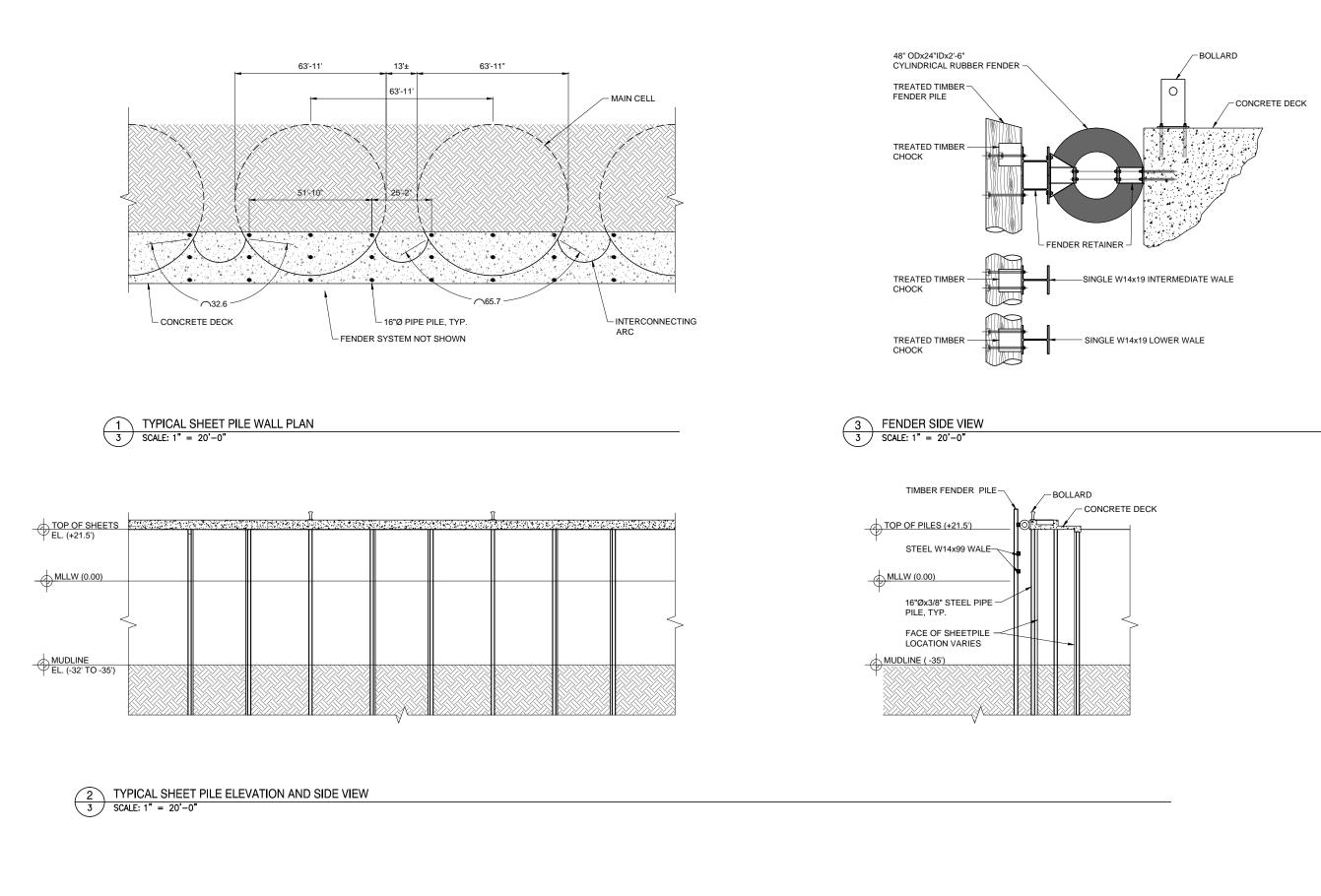

North Dolphin Fender


The problem with the North dolphin / fender is likely a pile capacity issue. To increase the capacity it is likely that a new pile support system be designed with larger and deeper driven piling. More information is required for this including the existing soil conditions, pile driving records, design vessel and berthing velocity etc. If the original geotechnical report is available that may help. Armed with this information preliminary design and investigation could outline the estimated capacity of the existing fender as well as new concepts, increased capacities, and a cost estimate for a repair.


Dry Dock #2 CP System

It is recommended that the impressed current CP system on dry dock #2 be retrofitted to include a control system that turns the system on and off at various stages of the tide.


APPENDICES



NORTH DRY DOCK DOLPHIN SCALE: N.T.S.

			700 G STREET, SUITE 500	ANCHORAGE, AK 99501	FAX: (907) 276-7679	
REVISIONS	DESCRIPTION					
	NO. BY DATE					
CITY OF KETCHIKAN	KETCHIKAN SHIPYARD	CATHODIC PROTECTION	KETCHIKAN, ALASKA	SUEET DILE WALL DI AN AND ELEVATION	OREET FILE WALL FLAN AND ELEVATION	
DATE:		26220 09/10/		1		
SHEET	LED BY:		3			

3 OF 3

Appendix B: Dive Reports

Daily Log

W/0 #: 106321

Global Diving & Salvage, Inc.

3840 West Marginal Way S.W. Port of Seattle, Terminal 13 Seattle, WA 98106

Divers • Constructions • Environmental Technicians

								AIR SPREAD, METER, UP						No
PO/Job #:		HICAN, AK			er Coors Simonson	VISVADER		۲			ΟΑΓΕΥ	99-436C	H (0073	□ Yes
Date: 7-5-11	Customer: URS	Location: KETCHIKAN, AK	Service:		Crew: ZACHARY JAMES	Orto		Equipment/ Supplies: SylAllow VIDE0 SYSTEM, CY6NUS	s is tem		Contact: JoHN DALEY	Phone #: 907 - 306- 4966	Filled Out by: ZACH COOTS	Quote Provided: Quote #:
Description	TRAVEL TO KETCHIKAN	IN HC	ALEY	RCVP AND INVENTORIED GEAR	3	GET WORK TRUCK, SHAKE OUT GEAR, ASSEMBLE AND TEST SOME CEN	OFF SITE							
P	1230	1330	1430	1500	1530	1800								
From	0730		1330	1430	1500	1530	1900							

Revised By: CMP

Revision Date: 12.15.009

Daily Log

W/0 #: 106321

Global Diving & Salvage, Inc.

3840 West Marginal Way S.W. Port of Seattle, Terminal 13 Seattle, WA 98106

Divers • Constructions • Environmental Technicians

Date: 7 - <i>6</i> - <i>i</i> 1 PO/Job #:	Customer: URS	Service:			Crew: ZACHARY COOTS JAMER SUMORADO	OTTO VISVADER			Equipment/ Supplies: SHALLOW AIR SPREAD, VIDED SYSTEM, CYGNUS METER, CP SYSTEM				Contact: John Orcey	Phone #: 907 - 306-4966	Filled Out by: 24CH CooTS	Quote Provided:
Description	OWSTRE, STARET SETTING UP DIVE SPREAD ON TRUCK, SAFEN MEET	MOVED INTO FIRST DIVE LOCATION AND SET UP SKIFF DIE J. SUNDANK 15 @ 1008 AND REACHED SURFICE @ 103	PTH. UT + CP INSPECTION ON PILING) to NEXT LOCATION	HI, DEADY LS (143 AND		pur J. Daley 15 0 1400 + RS 0 1428	BT:20 37'DEAPTH. UT & CP INSPECTION ON PILING	MOVE SPREAD TO NEXT LOCATION	DUR J. DALEY LS & 1506 AND RS @ 1547 BT: 40 49' DEADTH, UT & CP INSPECTION ON PILING	EAR AND SPL	PLAN FOR NEXT DAY.		OR SIE		
To	0930	1000	1103	Ofil	1232	1245)	1428	1500	1547				1700		
From	0100	0930	1008	1105	2011	19.25		1400	0641	1506	1600		4			

Revised By: CMP

Revision Date: 12.15.009

Revision Date

lnc.
alvage,
& S
Diving
Global

3840 West Marginal Way S.W. Port of Seattle, Terminal 13 Seattle, WA 98106

Daily Log

W/O #: /06321

												AIR SPREAD,	Marsis in system							ON 🗆	
	Date: 7.7.// PO/Job #:	Customer: URS	Location:	reichikan,	Service:			Crew: ZACHART (COTS	-	1 1		Equipment/ Supplies: SHALLOW AIR SPREAD					Contact: JOHN DALEY	Phone #: 907 - 306 - 4966	Filled Out by: ZACH COOTS		
Divers • Constructions • Environmental Technicians	Description	UP IN LECATION FOR D	SIMONSON LU SURFACE @ 0907 AND RJ	BT: 25 37' DEAPTH. UT & CP INSPECTION ON VILING	CXT LOCATION	N SURFACE @ 1	BT:34 40' DEMPH. UT & CP INSPECTION ON PILING	200 L V V V VI VI VI		0 37' DEAPT.	E SPREAD TO NEXT LOCATION.	DALEY LV SUPFACE & 1438 AND 25 @	BT : 20 41' DEAPTH. UT & CP INSPECTION ON PILING	DENNER TAULY AND PALL OF MARY (500 Pro SHIBPLUK	The start is able to all the start	OFFSITE					
	To	09.00		2260	1000		1043	0001	1600	1255	1430		1458	1830							
	From	0 700		7070	0935		1009	1411C	043	105	1300		1438	1500		1830					

Revised By: CMP

Revision Date: 12.15.009

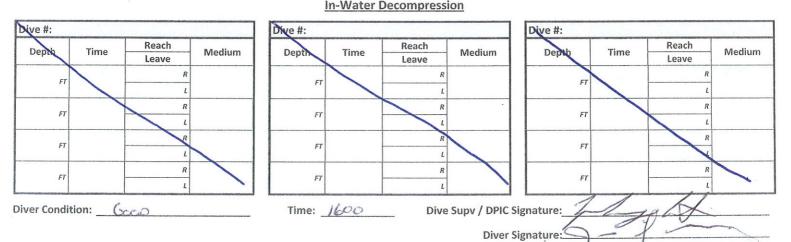
Inc.
Salvage,
20
 Divin
 lobal

3840 West Marginal Way S.W. Port of Seattle, Terminal 13 Seattle, WA 98106

Daily Log

W/O #: 106321

	#								AIP SPREAD, ETER, CP SYSTEM				No	Revision Date: 12.15.0
	Date: 7-8-// PO/Job #:	Customer: URS	Location: KETCHIKAN, AK		Service:		Crew: 2ACH COOTS JAMES SMONSOL	1	Equipment/ Supplies: SHALLOW AIP SPREAD, VIDEO SYSTEM, CYGNUS METER, CP SYSTEM		Contact: JoHN DALEY	Filled Out by: Zach Con 13		
Divers • Constructions • Environmental Technicians	Description		FINISH PACIFING GEAR, OLI GEAR SAIPPEU TALU LYNDEIN	STAND BY IN KETCHIKAN FOR PLANE RIDE TO ANCHORAGE	1000 1100 1100	IKNNET TROW PETCHIKAN IN UNCHORMOL								Revised By: CMP
	To	1000	2	\$700		0077								
	From	Cord	0010	1000	170.0	001								50005 0-0005


Form #: IIIP 10.0-0005

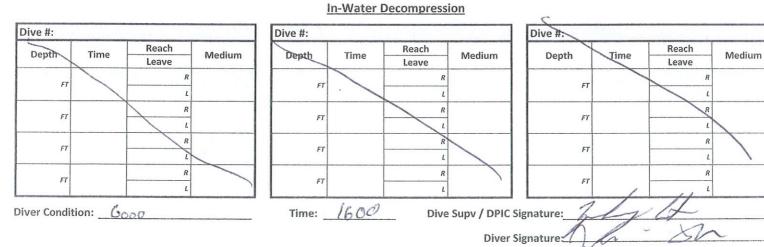
Revised By: CMP

开上

GLOBAL Diving & Salvage, Inc.				1 .11		
Diver: First JAMES Lost SIMC Project: ALASICA SHIPYARD DOCK IN	Given Name)		Date: <u>7</u> / ler #: 106		-	
ocation: KETCHIKAN, AK		Platform/Ve	ssel: SKIPP	=		
Dive Supervisor / DPIC: 2. CODTS	Topside Personnel: J. DALEY		Air Temp:	55 %	Altitude:	
Diver Tender: O, VISVADER	Stby Tender: O. VISVADE		C C1	tim	Current:	
Diver Dress:	Stby Diver:		Water Temp: 55 °F			
Diver Helmet: 52-178	Stby Helmet: MILLER		U/W Visibility:	10'		
Diver Bailout:	Stby Bailout: 3000 Psi	AIR Mix	Bottom Type:	Direr	S.	
	Breathing M					
Primary: Air: 🗹 Compressor or [] HP 🔟			_% H	EO2:	Psi%	
Back-Up: Air: [] Compressor or [] HP				EO2:	Psi%	
	Breathing So	ources				
Bank Mix Start Psi		Bank	Mix	Start Psi	End Psi	
L/S: Surface Intvl: Start Group:	Max Depth:	Work Completed:		SPECTION	Dive #:	
L/B: Bottom Time: RNT:	Total Time:	ON CELLS	6+7		14	
1102 54	54					
R/S: Table Used: 1103 40 cmt 63	End Group:					
Ueptin Ueptin						
1142 :39	G Max Depth: 41 FT	Work Completed: CP ON ROUND	PUE BI	SPECTION ENTS 1-1	Dive #:	
L/B: 1231 Bottom Time: 49 .50	5 Total Time: 1:45		THE U			
R/S: 1233 Table Used: 45 Depth 114	End Group:					
L/S: Surface Intvl: Start Group:	Max Depth:	Work Completed:			Dive #:	
L/B: Bottom Time: RNT:	Total Time:	÷			, L	
R/S: Table Used:	End Group:					
Depth	Time In-Water Decon					

Form #: IIPP 10.0-0001a

Revision Date: 04.22.09 by CMP

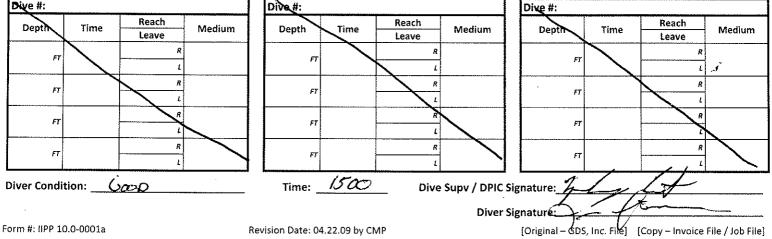

[Original – GDS, Inc. File] [[Copy – Invoice File / Job File]

	GDS – Seattle, WA
	GID – Rio Vista, CA
5	GOD – Anchorage, AK

ギノ

GLOBAL Diving & Salvage, Inc							
Diver: First	OHN	Lost DALEY	(Given Name)		Date: 7	6 111	
	LASKA SHIPYARD	Dock In	SPECTION		Order #: 106		
Location:	ETCHIKAN, AK			Platform/	Vessel: SKIF	F	
Dive Supervisor	/ DPIC: 2. COOTS		Topside Personnel:	IMONSON	Air Temp:	55°F	Altitude:
	O. VISVADER		Stby Tender: O. V	SVADER		ALM	Current: D 5 KNOTS
Diver Dress:	DRYSUIT		Stby Diver: J. S.	MONSON	Water Temp:	LOOL	
Diver Helmet:	MILLER		Stby Helmet: 5L-17		U/W Visibility	"10'	
Diver Bailout:	3000 PSi A	IR Mix	Stby Bailout: 3000 Psi	AIR Mix	Bottom Type	DIRT	
			Breathing				
Primary: A	ir: 🚺 Compressor or	[]HP 180		Psi	%	HEO ₂ :	Psi%
Back-Up: A	ir: [] Compressor or	[V] HP 2200		Psi	%	1EO2:	
			Breathing			£	
Bank	Mix	Start Psi	End Psi	Bank	Mix	Start Psi	i End Psi
Dank	IVIX	Start PSI	End PSI	Ddlik	IVIIX	Start PSI	Eliu PSI
L/S:	Surface Intvl:	Start Group:	Max Depth:	Work Completed: C	P + UT INSP	ECTION OF	N Dive #: 2 A
1400 L/B:	12:00+ Bottom Time:	DNIT	37	Work Completed: C. FT CELLS 2-6	STILL F	Motos 0	N ZA
1428	:28	RNT:	Total Time:	CELL 5			
R/S:	Table Used:		End Group:				
1429	40 Dept	36 Tim	e D				
L/S: 1506	Surface Intvl:	Start Group:	Max Depth: 49	Work Completed: C	PTUT IN	SPECTION	Dive #: 2 B
L/B: 1546	Bottom Time: ;40	RNT: : 26	Total Time:	TOP BENTS STILL PHO	tos on	BENTS 1	6+17
^{R/S} 1547	Table Used: 55 Dept	71 Tim	End Group:				
L/S:	Surface Intvl:	Start Group:	Max Depth:	Work Completed:			Dive #:
L/B:	Bottom Time:	RNT:	Total Time:	FT			L
R/S:	Table Used:		End Group:				
	Depti	Tim	Concerne and and a			,	

Form #: IIPP 10.0-0001a


Revision Date: 04.22.09 by CMP

[Original – 6DS, Inc. File] [Copy – Invoice File / Job File]

.

÷	1			·			
AMES SILVING 1	Lost SIMON	SON (Given Nome)			<u> </u>		
	JOCK INSPEC	<u>MON</u>					
			Platform/V	essel: <u>SKIPP</u>			
/ DPIC: Z. COOTS	Tc	opside Personnel:	LEY	Air Temp: 50°	Altitude: Ø		
O. VISVADE	R St	thy Tender 🔺 🔥		Sea State: CALM	Current: 05 K-NOTS		
DRYSUIT	St	J. DA	Diver		Water Temp		
SL-17		by Heimet:					
3000 psi A	IR-Mix St	tby Bailout: 3000 Psi	AIRMIX	Bottom Type: SAND			
		Breathing	<u>Medium</u>				
ir: [/]Compressor or	[]HP 180	Psi Nitrox:	Psi	% HEO2.	Psi%		
ir: [] Compressor or	[/] HP 2200	Psi Nitrox:	Psi	% HEO ₂ :	%		
		Breathing	Sources				
Mix	Start Psi	End Psi	Bank	Mix Start P	si End Psi		
Surface Intvi:	Start Group:	Max Depth:	Work Completed: / C	JUT INCOLOGIAND	⊃N Dive #:		
12:00+	1	37 <i>P</i>	CELLS 14 +	IS,	Dive #: _3A		
1	RNT:						
Table Used:	<u> </u>	End Group:					
40 Depth	27 _{Time}						
Surface Intvl:	Start Group:	Max Depth:	Work Completed:	T UT INSPECTION	ON Dive #: 3B		
Surface Intvl: 36 Bottom Time:	Start Group:	Max Depth: 40 FT	Work Completed: Cf CELLS 13 T	HOUCH 11	ON Dive #: 3B		
Surface Intvl: 36 Bottom Time: 34	Start Group:	Max Depth: 40 FT Total Time: 58	Work Completed: Cf CELLS 13 T	PT UT INSPECTION MROUCH 11	ON Dive #: 3B		
Surface Intvl: 36 Bottom Time:	Start Group: C RNT: , 24	Max Depth: 40 FT	Work Completed: Cf CELLS 13 T	PAUT INSPECTION MROUCH 11			
Surface Intvl: 36 Bottom Time: 34 Table Used: 45 Depth	Start Group: RNT: 2.4 6.3 time Start Group:	Max Depth: 40 FT Total Time: 58 End Group: 4 Max Depth:	Work Completed: / D	HROUGH II	J Dive #:		
Surface Intvl: 36 Bottom Time: 34 Table Used: 45 Depth Surface Intvl: 1:21 Bottom Time:	Start Group: RNT: 24 63 Time Start Group: G RNT:	Max Depth: 40 FT Total Time: 58 End Group: 4 Max Depth: 37 FT Total Time:	Work Completed: / D	HROUGH II	J Dive #:		
Surface Intvl: 36 Bottom Time: 34 Table Used: 45 Depth Surface Intvl: 1:21 Bottom Time: 56 Table Used:	Start Group: RNT: 24 63 Time Start Group: G	Max Depth: You Total Time: 58 End Group: Max Depth: 37 Total Time: 1:54	Work Completed: / D	nrouch 11	J Dive #:		
Surface Intvl: 36 Bottom Time: 34 Table Used: 45 Depth Surface Intvl: 1:21 Bottom Time: 50	Start Group: RNT: 24 63 Time Start Group: G RNT:	Max Depth: 40 FT Total Time: 58 End Group: 4 Max Depth: 37 FT Total Time:	Work Completed: / D	HROUGH II	J Dive #:		
Surface Intvl: 36 Bottom Time: 34 Table Used: 45 Depth Surface Intvl: 1:21 Bottom Time: 56 Table Used: 40	Start Group: RNT: 2.4 6.3 Time Start Group: G RNT: 64 1.21	Max Depth: You Total Time: 58 End Group: Max Depth: 37 Total Time: 1:54	Work Completed: CP BENTS 21 THI DOLPHIN, AND	HROUGH II	J Dive #:		
	AMES LASKA SHIPYARD I CETCHIKAN, AK /DPIC: 2. COOTS O. VISVADE DRYSUIT SL-17 3000 Psi A Nir: ['] Compressor or ir: [] Compressor or Mix Surface Intvi: 12:00 + Bottom Time: ; 2:5	LASKA SHIPYARD DOCK INSPEC $(ETCHIKAN, AK)$ AK / DPIC: Z. COOTS To $O.$ $VISVADER$ St $O.$ $VISVADER$ St $DRYSUIT$ St $SL-17$ St $3000 Psi$ $A_{IR}Mix$ AIR: St AIR: St Surface Intvl: Image: Start Group: $I2:OO T Image: RNT: I2:OO T Image: RNT: I2:ST Image: Image:$	AMES Lost SIMONSON (Given Name) LASKA SHIPYARD DOCK INSPECTION (Given Name) VETCHIKAN, AK Topside Personnel: J. DA /DPIC: Z. COOTS Topside Personnel: J. DA O. VISVADER Stby Tender: O. VIS DRYSUIT Stby Diver: J. DA Stby ADER Stby Diver: J. DA DRYSUIT Stby Diver: J. DA Stoy Bailout: MILLER 3000 Psi AIR_Mix Stoy Bailout: 3000 Psi AIR_Mix Stoy Bailout: Stoy Psi AIR_Mix Breathing Nir: [] Compressor or [] HP 180 Psi Nitrox: Breathing Nitrox: Breathing Surface Intvi: Start Group: Max Depth: 37 I 2:00 + RNT: Total Time: :25 .	AMES Lest SIMONSON (Given Nome) LASKA SHILYARD DOCK INSPECTION Work OF CETCHIKAN, AK Platform/V VIDIC: 2. COOTS Topside Personnel: TOPLEY O. JISVADER Stby Tender: O. JISVADER DALEY DRYSUIT Stby Diver: J. DALEY SL-17 Stby Diver: J. DALEY 3000 Psi A.R.Mix Stby Bailout: Breathing Medium Nir: ['Compressor or [] HP 180 Psi Nitrox: Psi Surface Intvi: Start Psi End Psi Bank Bank Bank Surface Intvi: Start Group: Max Depth: Work Completed: (FF CELLS / H + Total Time: : 25 1/4 +	AMES Last Simon Son (Siven Nome) Date: $7/7/1$ LASE A SHIPYARD DOCK INSPECTION Work Order #: 10632.1 Vork Order #: 10632.1 Vark Order #: 10632.1 Vork Order #: 10632.1 Vork Order #: 10632.1 Platform/Vessel: $SKIFF$ / DPIC: Z. Coots 0. VISVADER Step Yender: 0. VISVADER Step Yender: 0. VISVADER See State: DRYSUIT Step Verice: J. SL-17 Step Verice: MILLER Bottom Type: Sand D 3000 Psi AIR_Mix Breathing Medium Nitrox: Psi % HEO2: Breathing Sources Mix Start Psi Start Group: Max Depth: I2:00 + Start Group: Bottom Time: RNT: Total Time: Total Time:		

GLOBAL Diving & Salvage, Inc.								
Diver: First	JOHN	Lost DALI	ey	(Given Nome)		Date: 7 /	7/11	
Project: AL	ASKA SHIFTARD	DOCK 11	VSPECTION	-	Work Or	der #: _106-3	2)	
Location: K	ETCHIKAN, AK			-	Platform/V	essel: <u>SKIF</u>		
Dive Supervisor	/DPIC: 2. Coots		Topside Personne	J. SIM	ON SON	Air Temp:	1	titude: Ø
Diver Tender:	O. VISUADER		Stby Tender:	O. VISU		Sea State:	ilm ^{cu}	Irrent: O: -, 51KNGTS
Diver Dress:			Stby Diver:			Water Temp:	COOL	
Diver Helmet:	DENSUIT MILLER		Stby Helmet:	<u>J. Sime</u> SL-17		U/W Visibility:	10'	
Diver Bailout:		R _{Mix}	Stby Bailout:	3000 Psi	A IP-Mix	Bottom Type:	SAND	
			•	Breathing M	<u>edium</u>			
Primary: A	ir: [/Compressor or	[]HP	80 _ _{Psi}	Nitrox:	Psi	% HE	O ₂ :	_Psi%
	ir: [] Compressor or			Nitrox:	Psi	<u>%</u> HE	.O ₂ :	Psi%
				Breathing S	ources			
Bank	Mix	Start Psi	End P	si	Bank	Mix	Start Psi	End Psi
L/S: 1438	Surface Intvl: 12:00 +	Start Group:	Max De	^{pth:} 41 _{FT}	Work Completed: しょ のい くをしんう	PAUT INSP	RCTION	Dive #: 4
L/B:	Bottom Time:	RNT:	Total Ti	me:		O INWVG	4 10	
1458	:20		·	:20				
R/S:	Table Used: 45	24	End Gro	c C			<i>i</i>	
L/S:	Surface Intvi:	Start Group:	Max De	pth:	Work Completed:			Dive #:
				FT				
L/B:	Bottom Time:	RNT:	Total Ti	me:				
R/S:	Table Used:	.1	End Gro	oup:				
	Depth		Time					
L/S:	Surface Intvl:	Start Group:	Max De	epth: FT	Work Completed:			Dive #:
L/B:	Bottom Time:	RNT:	Total T					P-1.
R/S:	Table Used:	1	End Gr	oup:	-			
I	Depth		<u>Time</u>	n-Water Deco	mpression			
Dive #:			Dike #:			Dive #:		
Depth	Time Reach Leave	Medium	Depth	Time	each Medium eave	Depth	Time	Reach Leave Medium
FT	R		FT		R L		et l	R L
FT	R		FT		R		FT	R
FT			FT		R		FT	

FT

Diver Condition: _____

L

R

L

Revision Date: 04.22.09 by CMP

Time: 1505

FT

L

R

L

Dive Supv / DPIC Signature:_

Diver Signature

[Original – GDS, Inc. File] [Copy – Invoice File / Job File]

7 2

FT

6

L

R

ι

Memorandum

URS

Date:September 27, 2011To:John Daley

Cc: 26220967 Project File

From: William Loskutoff

Subject: Ketchikan Shipyard Facility – Ship Lift Dock Sheet Pile Coating Analysis

In July 2011, URS performed an inspection of waterfront facilities of the Ketchikan Shipyard in Ketchikan, Alaska as part of a cathodic protection project. On July 6, 2011, URS collected a sample of coating from sheet pile of the ship lift facility. During the inspection, the coating on the sheet pile cells was failing and eroding off the pile surfaces. Active corrosion processes were observed during the inspection. The sheet pile cells for the ship lift facility were constructed in 1982 and were originally coated and protected by an impressed current cathodic protection system. Removal and replacement of the coating is planned to support the cathodic protection project. The coating sample was collected and analyzed for evaluating the presence or absence of hazardous materials in order to prevent worker exposure or site contamination during removing, handling, and disposal of the coating from the sheet piles. Removal and surface preparation during replacement of the coating will likely involve sand or water blasting.

SAMPLE ANALYSIS

The coating sample was analyzed for asbestos containing materials (ACMs), inorganic lead, and semi-volatile organic compounds (SVOCs). The coating sample (KSLD-1) was solid, pliable, with iron oxide staining on the outer surface. The inner surface of the coating was a light gray color and a smooth texture. Numerous barnacles, a marine calcareous crustacean were attached to the outer surface of sample KSLD-1. The sample exhibited a salt-water marine odor.

The ACM analysis was conducted by White Environmental Consultants, Inc of Anchorage, Alaska. Asbestos content was determined using polarized light microscopy in accordance with U.S. Environmental Protection Agency (EPA) Method 600/M4-82-020. Asbestos containing material is defined as materials containing more than 1% total asbestos based on EPA and the Occupational Safety and Health Administration (OSHA) criteria.

The inorganic lead and SVOCs Toxicity Characteristic Leaching Procedure (TCLP) analyses were conducted by SGS North America, Inc. of Anchorage, Alaska. TCLP analysis is designed to determine the mobility of both inorganic and organic compounds present in liquid, solid, and multiphase wastes. The TCLP analysis simulates landfill conditions to determine if a waste material will leach specific chemicals into the soil or groundwater. The TCLP evaluation for solids follows analytical test method Solid Waste Method 1311 (SW 1311). The lead TCLP analysis utilized SW1311 and EPA Method 6020. The TCLP SVOCs analysis utilized SW 1311 and EPA Method 8270D.

URS Corporation 700 G Street, Suite 500 Anchorage, AK 99501 Phone: 907.562.3366 Fax: 907.562.1297 www.urscorp.com

SAMPLE RESULTS

Sample KSLD-1 was analyzed for ACMs by White Environmental. A copy of the Bulk Sample Analysis for Asbestos report is provided as an attachment to this memorandum. Sample KSLD-1 was analyzed for TCLP lead, and TCLP SVOCs by SGS North America. A copy of the Analytical Laboratory Report is provided as an attachment to this memorandum. The TCLP laboratory results were validated and reviewed by a URS Project Chemist in accordance with Alaska Department of Environmental Conservation (ADEC) regulations. A Laboratory Data Review Checklist is provided as an attachment to this memorandum.

Based on the polarized light microscopy analysis, sample KSLD-1 does not contain ACMs. Based on the analytical results, sample KSLD-1 contains lead concentrations below the method limit of quantitation or practical quantitation limit. KSLD-1 contains concentrations of SVOCs below the method limit of quantitation or practical quantitation limit for all analytes tested. Table 1 summarizes the lead and SVOC analytical results for sample KSLD-1.

Analyte	Result (mg/L)	ADEC Groundwater Cleanup Level (mg/L)	EPA Hazardous Waste Regulatory Level (mg/L)
Lead	< 0.0310	0.015	5
2,4,5-Trichlorophenol	< 0.0620	3.7	400
2,4,6-Trichlorophenol	< 0.0620	0.077	2.0
2,4-Dinitrotoluene	< 0.0620	0.0013	0.13
2-Methylphenol(o-Cresol)	< 0.0620	1.8	200
3&4-Methylphenol(p&m-Cresol)	<0.124	1.98	400
Hexachlorobenzene	<0.0620	0.001	0.13
Hexachlorobutadiene	<0.0620	0.0073	0.5
Hexachloroethane	<0.0620	0.04	3
Nitrobenzene	<0.0620	0.018	2
Pentachlorophenol	< 0.300	0.001	100
Pyridine	<0.124	nr	5

TABLE 1 - Sample KSLD-1 Lead and Semi-volatile organic compounds TCLP Analytical Results.

Notes: mg/L = milligrams per liter

< = not detected. Limit of Quantitation shown.

TCLP-Lead by SW1311/6020

TCLP-Semi-volatile organics by SW1311/8270D

ADEC Groundwater Cleanup Levels per 18 AAC 75.345, Table C as amended October 9, 2008.

EPA Hazardous Waste Regulatory Cleanup Level per 40 CFR Part 261.

Bold = indicates analyte considered carcinogenic

CONCLUSIONS

One sample of coating from sheet pile at the Ketchikan ship lift dock facility was analyzed for ACMs, and TCLP lead and TCLP semi-volatile organic compounds. ACM was not found in the sample. TCLP lead analysis indicated non-detect concentrations below federal hazardous waste criteria. TCLP SVOCs analysis indicated non-detect concentrations for all analytes tested below federal hazardous waste criteria. OHSA regulations (29 CFR 1926.1101) and the State of Alaska Department of Labor (8 AAC 61) apply to all workplace activities involving asbestos-containing materials. The coating was not found to contain asbestos, and thus is not regulated by 29 CFR 1926.1101 and is not required to be disposed of as an asbestos-containing waste. OSHA regulations (29 CFR 1926.62) and the State of Alaska (8 AAC Chapter 61) apply to all construction work where employees may be exposed to lead. The coating was not found to contain concentrations of lead which would be likely to result in lead exposure to workers disturbing the coating and is not required to be disposed of as a lead-containing waste. OSHA regulations (29 CFR 1926.55) and Alaska Statutes (8 AAC 61.1100) apply to work where employees may be exposed to polynuclear aromatic hydrocarbons like cresol. The coating was not found to contain concentrations of polynuclear aromatic hydrocarbons like cresol. The coating was not found to contain concentrations of polynuclear aromatic hydrocarbons (PAHs) which would be likely to result in PAH exposure to workers disturbing the coating and is not required to be disposed of as a PAH-containing waste.

References

- Alaska Department of Environmental Conservation, 2008. 18 AAC 75-Oil and Other Hazardous Substances Pollution Control, as amended October 9.
- SGS North America, Inc. Alaska Division, 2011. Ketchikan Dock, Level II Laboratory Data Report, SGS Work Order 1113163, July 22.
- URS, 2011. Draft Inspection Report-Ketchikan Ship Yard Cathodic Protection Project, Ketchikan, Alaska, prepared for Alaska Industrial Development and Export Authority, July.
- White Environmental Consultants, Inc., 2011. Bulk Sample Analysis for Asbestos, Ketchikan Ship Lift Dock, WEC Project No. 11G-494, July 14.

I St., Suite 203, Anchorage, AK 99501-		(907) 2 (907) 2	58-8662	Lab Code: 2001	D 124-0 TEMAILE
Bulk Sample	Analysis	for	Asbes	StOS Report #: 81415	
WEC Project #: 11G-494 Client Project#: 26220967.02000		• .	Re	port By: C.Blancha ort Date: 7/14/2011	ard
Client: URS Corp. P.O. Box 203970 Austin, TX 78720 # Samples: 1 # Layers:		<u> </u>	Colie Ar Anal Be	tion Date: 7/6/201 ection By: CLIENT TAT: 5 Day ialysis By: D.Miltor lysis Date: 7/14/20 ceived By: Milton sived Date: 7/14/20	n 11
KSED-1		<u> </u>		Material Coating Homo- genous	Layer 1 of 1 Color
ASBESTOS None Detected Other Fibrous Materials	6 Non-Fibrous Mate	rials:	100%	No	Gray
None Detected			Date	7/14/2011	
Milton Dave, Lab Analyst		<u></u>	Date	7/14/2011	·
		· .	÷		
Analysis performed by EPA Method 600/R-93/1 counting method is requested and noted for the to claim product endorsement by NVLAP or any the approval of WEC Inc., and are subject to W					inless point- ied by client ced without

	731 I Street, Suite 4868 Old Airport	203, Anchora Way, Fairbank	WHI ENV COP ge, ак 99501 г s, ак 99701 р	ISULI	MENTA ANTS 258-8661 Fax 56-4637 Fax	INC. : (907) 258-866	2		
Date: <u>7.14.11</u> Client Name: <u>UPS</u> Billing Address:		Proj		etchiku	Ship	Project #:			хø
Phone:								·	
**By signing for these Samples Relinquished By: Samples Received By: Samples Received By: Method of	W.U.T. Blanc Samples Analysis Turn-aroun	AULS NULS Type: PCM Con	PLM TH	EM LEA Y N HR 48H	Date: Date: Date: Date: D TCLP (1- [4] · [1] 	Time: Time: Time: Time:):52am 10:52:19m	
Sample #	Collection Date	Sample Condition	Turnaround Time SDAy	Analysis Type	Volume (L) Air Samples	Time (min) Air Samples	Flow Rate Samples	AR	
	URS	Senior Ge Project Ma URS Alaska 700 G Stre Anchorage Tel: 907.56 Direct: 907 Fax: 907.5	anager a, LLC et, Suite 500 , AK 99501 52.3366 7.261.6736						

It is the responsibility of the Customer unsuitable due to damage, incorrect or insufficient labeling, or incorrect sample loading. WEC will contact the Customer as soon as such a problem is identified and will discuss with the Customer the course of action to be taken.

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: 26220967.02000 Ketchikan Dock URS Corporation 1113163

Released by:

Kust Clarkson

Alaska Division Project Manager/Safety Officer

Kurtiss Clarkson 2011.07.22 15:33:57 -08'00'

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

CASE NARRATIVE

Client Name: URS Corporation Project Name: 26220967.02000 Ketchikan Dock Workorder No.: 1113163

Sample Comments

Refer to the sample receipt form for information on sample condition.

Lab Sample ID	Sample Type	Client Sample ID
1038218	* MB	MB for HBN 1220159 [XXX/25174]
	8270D - MB recovery in the associated sam	for bis(2-ethylhexyl)phthalate is greater than the LOQ. This analyte was not detected above the LOQ ples.
1038219	* LCS	LCS for HBN 1220159 [XXX/25174
	8270D - LCS recover the LOQ in the associ	y for butylenzylphthalate is outside of QC criteria (biased high). This analyte was not detected above iated samples.
1038220	* LCSD	LCSD for HBN 1220159 [XXX/2517
	PD for several analytes does not meet QC criteria. These analytes were not detected above the LOQ ples.	
1038726	* CCV	CCV for HBN 1220777 [XMS/6074]
	8270D - CCV recover in the associated sam	y for benzoic acid is outside of QC criteria (biased high). This analyte was not detected above the LOQ ples.

* QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

CAS S Corporation Print Date: 7/22/2011

Laboratory Analytical Report

Client: URS Corporation 700 G Street Suite 500 Anchorage, AK 99501

> Attn: Bill Laskohoff T: F:

Project: 26220967.02000 Ketchikan Dock

Workorder No.: 1113163

Certification:

This data package is in compliance with the terms and conditions of the contract, both technically and for completeness, unless otherwise noted on the sample data sheet(s) and/or case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory. If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Kurt Clarkson

Project Manager

Contents (Bookmarked in PDF):

Cover Page Glossary Sample Summary Forms Case Narrative Sample Results Forms Batch Summary Forms (by method) Quality Control Summary Forms (by method) Chain of Custody/Sample Receipt Forms Attachments (if applicable)

Print Date: 7/22/2011

Enclosed are the analytical results associated with the above work order. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. If you have any questions regarding this report, or if we can be of any other assistance, please contact your SGS Project Manager at 907-562-2343. All work is provided under SGS general terms and conditions (<http://www.sgs.com/terms and conditions.htm>), unless other written agreements have been accepted by both parties.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & UST-005 (CS) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035B, 6010B, 6020, 7470A, 7471B, 8021B, 8081B, 8082A, 8260B, 8270D, 8270D-SIM, 9040B, 9045C, 9056A, 9060A, AK101 and AK102/103). Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, the National Environmental Laboratory Accreditation Program and other regulatory authorities. The following descriptors or qualifiers may be found in your report:

- * The analyte has exceeded allowable regulatory or control limits.
- Surrogate out of control limits.
- B Indicates the analyte is found in a blank associated with the sample.
- CCV Continuing Calibration Verification
- CL Control Limit
- DF Dilution Factor
- DL Detection Limit (i.e., maximum method detection limit)
- E The analyte result is above the calibrated range.
- F Indicates value that is greater than or equal to the DL
- GT Greater Than
- ICV Initial Calibration Verification
- J The quantitation is an estimation.
- JL The analyte was positively identified, but the quantitation is a low estimation.
- LCS(D) Laboratory Control Spike (Duplicate)
- LOD Limit of Detection (i.e., 2xDL)
- LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)
- LT Less Than
- M A matrix effect was present.
- MB Method Blank
- MS(D) Matrix Spike (Duplicate)
- ND Indicates the analyte is not detected.
- Q QC parameter out of acceptance range.
- R Rejected
- RL Reporting Limit
- RPD Relative Percent Difference
- U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content. All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Print Date: 7/22/2011 12:13 pm

Client Name: URS Corporation Project Name: 26220967.02000 Ketchikan Dock Workorder No.: 1113163

Analytical Methods

<u>Method Description</u> Metals by ICP-MS Semi-Volatile TCLP Liq/Liq Analytical Method SW6020 TCLP SW8270D TCLP

Sample ID Cross Reference

Lab Sample ID 1113163001 Client Sample ID KSLD-1

URS Corporation

Print Date: 7/22/2011 12:13 pm

Client Sample ID: **KSLD-1** SGS Ref. #: 1113163001 Project ID: 26220967.02000 Ketchikan Dock Matrix: Solid/Soil (Wet Weight)

Collection Date/Time: 07/06/11 10:00 Receipt Date/Time: 07/14/11 14:00

TCLP Constituents Metals

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DF	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	0.0310 U	0.0500	0.0155	mg/L	25	MMS7090	MXT4550	
Batch Information								
Analytical Batch: MMS7090		Prep Batch: N	MXT4550			Initial Prep	Wt./Vol.: 5 m	ıL
Analytical Method: SW6020 TCLP	Prep Method: SW3010A Prep Extract Vol.: 50 mL							
Analysis Date/Time: 07/19/11 17:29	Prep Date/Time: 07/18/11 08:50 Container ID:111316300				01-A			
Dilution Factor: 25						Analyst: NF	RB	

SGS North America Inc.	Environmental Division	200 West Potter D rive Anchorage AK	99518 t(907)562.2343 f(907)561.5301
	www.ussgs.com		Member of SGS Group

URS Corporation

Print Date: 7/22/2011 12:13 pm

Client Sample ID: **KSLD-1** SGS Ref. #: 1113163001 Project ID: 26220967.02000 Ketchikan Dock Matrix: Solid/Soil (Wet Weight)

Collection Date/Time: 07/06/11 10:00 Receipt Date/Time: 07/14/11 14:00

TCLP Semivolatile Organic GC/MS

Parameter	<u>Result</u>	LOQ/CL	DL	<u>Units</u>	DE	<u>Analytical</u> <u>Batch</u>	<u>Prep</u> <u>Batch Qualifiers</u>	
2,4,5-Trichlorophenol	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
2,4,6-Trichlorophenol	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
2,4-Dinitrotoluene	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
2-Methylphenol (o-Cresol)	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
3&4-Methylphenol (p&m-Cresol)	0.124 U	0.200	0.0620	mg/L	1	XMS6074	XXX25174	
Hexachlorobenzene	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
Hexachlorobutadiene	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
Hexachloroethane	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
Nitrobenzene	0.0620 U	0.100	0.0310	mg/L	1	XMS6074	XXX25174	
Pentachlorophenol	0.300 U	0.500	0.150	mg/L	1	XMS6074	XXX25174	
Pyridine	0.124 U	0.200	0.0620	mg/L	1	XMS6074	XXX25174	
2,4,6-Tribromophenol <surr></surr>	79.29	40-125		%	1	XMS6074	XXX25174	
2-Fluorobiphenyl <surr></surr>	61.21	50-110		%	1	XMS6074	XXX25174	
2-Fluorophenol <surr></surr>	56.92	20-110		%	1	XMS6074	XXX25174	
Nitrobenzene-d5 <surr></surr>	58.8	40-110		%	1	XMS6074	XXX25174	
Phenol-d6 <surr></surr>	57.96	10-115		%	1	XMS6074	XXX25174	
Terphenyl-d14 <surr></surr>	82.98	50-135		%	1	XMS6074	XXX25174	
Batch Information								
Analytical Batch: XMS6074		Prep Batch	: XXX25174			Initial Prep	Nt./Vol.: 100 mL	
Analytical Method: SW8270D TCLP		Prep Metho	od: SW3520C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 07/19/11 17:12 Dilution Factor: 1		Prep Date/Time: 07/18/11 09:50				Container ID:1113163001-A Analyst: DSH		

SGS North America Inc. Environmental Division 200 West Potter Drive Anchorage AK 99518 t(907)562.2343 f(907)561.5301 www.ussgs.com Member of SGS Group

SGS Ref.# Client Name Project Name/# Matrix	1037974 URS Corporation 26220967.02000 Solid/Soil (Wet V	Ketchikan Dock			Printed Prep	Date/Time Batch Method Date	07/22/2011 12:13 XXX25174 SW3520C 07/18/2011
QC results affect the 1113163001	following production samp	les:		<i>.</i>			
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
TCLP Semivola	tiles						
2,4,5-Trichlorophe	enol	0.0248 U	0.0400	0.0124	mg/L	·	07/19/11
2,4,6-Trichlorophe	enol	0.0248 U	0.0400	0.0124	mg/L		07/19/11
2,4-Dinitrotoluene	1	0.0248 U	0.0400	0.0124	mg/L		07/19/11
2-Methylphenol (o	o-Cresol)	0.0248 U	0.0400	0.0124	mg/L		07/19/11
3&4-Methylpheno	l (p&m-Cresol)	0.0496 U	0.0800	0.0248	ing/L		07/19/11
Hexachlorobenzen	e	0.0248 U	0.0400	0.0124	mg/L		07/19/11
Hexachlorobutadie	ene	0.0248 U	0.0400	0.0124	mg/L		07/19/11
Hexachloroethane		0.0248 U	0.0400	0.0124	mg/L		07/19/11
Nitrobenzene		0.0248 U	0.0400	0.0124	mg/L		. 07/19/11
Pentachloropheno!		0.120 U	0.200	0.0600	mg/L		07/19/11
Pyridine		0.0496 U	0.0800	0.0248	mg/L		07/19/11
Surrogates							
2,4,6-Tribromophe	nol <surr></surr>	87.31	40-125		%		07/19/11
2-Fluorobiphenyl <		59.15	50-110		%		07/19/11
2-Fluorophenol <s< td=""><td>urr></td><td>60.32</td><td>20-110</td><td></td><td>%</td><td></td><td>07/19/11</td></s<>	urr>	60.32	20-110		%		07/19/11
Nitrobenzene-d5 <	surr>	59.68	40-110		%		07/19/11
Phenol-d6 <surr></surr>		65.83	10-115		%		07/19/11
Terphenyl-d14 <su< td=""><td>ITT></td><td>95.35</td><td>50-135</td><td></td><td>%</td><td></td><td>07/19/11</td></su<>	ITT>	95.35	50-135		%		07/19/11
Batch Method Instrument	XMS6074 SW8270D TCLP HP 6890/5973 STA						

SGS Ref.# Client Name Project Name/# Matrix	1038218 URS Corporation 26220967.02000 Water (Surface, E	Ketchikan Dock			Printed Prep	Date/Time Batch Method Datc	07/22/2011 12:13 XXX25174 SW3520C 07/18/2011
QC results affect the foll	owing production samp	les:					
1113163001						·····	
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
Semivolatile Or	ganic GC/MS						
2,4,5-Trichloropheno	1	0.00620 U	0.0100	0.00310	mg/L		07/19/11
2,4,6-Trichloropheno		0.00620 U	0.0100	0.00310	mg/L		07/19/11
2,4-Dinitrotoluene	t.	0.00620 U	0.0100	0.00310	mg/L		07/19/11
2-Methylphenol (o-C	resol)	0.00620 U	0.0100	0.00310	mg/L		07/19/11
3&4-Methylphenol (0.0124 U	0.0200	0.00620	mg/L		07/19/11
Hexachlorobenzene		0.00620 U	0.0100	0.00310	mg/L		07/19/11
Hexachlorobutadiene		0.00620 U	0.0100	0.00310	mg/L		07/19/11
Hexachloroethane		0.00620 U	0.0100	0.00310	mg/L		07/19/11
Nitrobenzene		0.00620 U	0.0100	0.00310	mg/L		07/19/11
Pentachlorophenol		0.0300 U	0.0500	0.0150	mg/L		07/19/11
Pyridine		0.0124 U	0.0200	0.00620	mg/L		07/19/11
Surrogates							
2,4,6-Tribromopheno	} <surr></surr>	82.1	40-125		%		07/19/11
2-Fluorobiphenyl <su< td=""><td></td><td>70.6</td><td>50-110</td><td></td><td>%</td><td></td><td>07/19/11</td></su<>		70.6	50-110		%		07/19/11
2-Fluorophenol <sur< td=""><td></td><td>62.8</td><td>20-110</td><td></td><td>%</td><td></td><td>07/19/11</td></sur<>		62.8	20-110		%		07/19/11
Nitrobenzene-d5 <su< td=""><td></td><td>67</td><td>40-110</td><td></td><td>%</td><td></td><td>07/19/11</td></su<>		67	40-110		%		07/19/11
Phenol-d6 <surr></surr>		71.9	10-115		%		07/19/11
Terphenyl-d14 < surr	>	87.4	50-135		%		07/19/11
• •	XMS6074						
	SW8270D TCLP						
Instrument	HP 6890/5973 STA						

SGS Ref,# Client Name Project Name/# Matrix	1038354 URS Corporatio 26220967.02000 Solid/Soil (Wet	Ketchikan Dock			Printed Prep	Date/Time Batch Method Date	07/22/2011 12:13 MXT4550 SW3010A 07/18/2011
QC results affect the 1113163001	e following production sam	ples:					
Parameter		Results	LOQ/CL	DL	Units		Analysis Date
TCLP Constit	uents Metals						
Lead Batch Method Instrument	MMS7090 SW6020 TCLP Perkin Elmer Sciex ICF	0.00310 U P-MS P3	0.00500	0.00155	mg/L		07/19/11

1 1 Client Name 1 Project Name/# 2	038220 Lab Cont IRS Corporation 6220967.02000 Ket		olicate		Printe Prep	d Date/Time Batch Method Date	07/22/2011 XXX25174 SW3520C 07/18/2011	12:13
	Vater (Surface, Eff.,			<u> </u>				
QC results affect the followi 1113163001	ig production samples	•						
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile Organ	ic GC/MS							
2,4,5-Trichlorophenol	LCS	0.0942	94	(50-110)			0.1 mg/L	07/19/2011
2,4,5-1110110100/1000	LCSI		88	(50-110)	6	(< 20)	0.1 mg/L	07/19/2011
2,4,6-Trichlorophenol	LCS	0.0976	98	(50-115)	7	(< 20.)	0.1 mg/L	07/19/2011 07/19/2011
	LCSI	0.0906	91		7	(< 20)	0.1 mg/L	07/19/2011
2,4-Dinitrotoluene	LCS	0.0992	99	(50-120)			0.1 mg/L	07/19/2011
	LCSI	0.0953	95		4	(< 20)	0.1 mg/L	07/19/2011
2-Methylphenol (o-Cresol)	LCS	0.0802	80	(40-110)			0.1 mg/L	07/19/2011
2-Memyrphenol (0-Cresor)	LCSE		72	(40-110)	11	(< 20)	0.1 mg/L	07/19/2011
3&4-Methylphenol (p&m-		0.130	93	(30-110)		(. 00)	0.14 mg/L	07/19/2011
	LCSI	0.114	82		13	(< 20)	0.14 mg/L	07/19/2011
Hexachlorobenzene	LCS	0.0947	95	(50-110)			0.1 mg/L	07/19/2011
	LCSE	0.0906	91		5	(<20)	0.1 mg/L	07/19/2011
TT	I CS	0.0790	70	(15, 105.)			01.00/1	07/10/2011
Hexachlorobutadiene	LCS LCSE	0.0789 0.0735	79 74	(25-105)	7	(< 20)	0.1 mg/L 0.1 mg/L	07/19/2011 07/19/2011
	LCSL	0.0755	7 4			(=0)	B.D	••••••
Hexachloroethane	LCS	0.0735	74	(30-100)			0.1 mg/L	07/19/2011
	LCSE	0.0676	68		9	(< 20)	0.1 mg/L	07/19/2011
Nitrobenzene	LCS	0.0794	79	(45-110)			0.1 mg/L	07/19/2011
	LCSE		72	```'	10	(<20)	0.1 mg/L	07/19/2011
Pentachlorophenol	LCS	0.144	103	(40-115)	7	(< 20)	0.14 mg/L 0.14 mg/L	07/19/2011 07/19/2011
	LCSE	0.140	100		3	(< 20)	V.14 IIIg/L	0//19/2011
Pyridine	LCS	0.0513	51	(20-76)			0.1 mg/L	07/19/2011
	LCSE	0.0272	27		61 *	(<20)	0.1 mg/L	07/19/2011
Surrogates			07	(40.105)				07/10/2011
2,4,6-Tribromophenol <sur< td=""><td>r> ECS LCSE</td><td></td><td>97</td><td>(40-125)</td><td>6</td><td></td><td></td><td>07/19/2011 07/19/2011</td></sur<>	r> ECS LCSE		97	(40-125)	6			07/19/2011 07/19/2011
	LCSL	1	91		v			0119/2011
2-Fluorobiphenyl <surr></surr>	LCS		79	(50-110)				07/19/2011

-

SGS Ref.#	1038219 Lab Control	Sample			Printed	Date/Time	07/22/2011	12:13
	1038220 Lab Control	Sample Dup	licate		Prep	Batch	XXX25174	
Client Name	URS Corporation					Method	SW3520C	
Project Name/#						Date	07/18/2011	
Matrix	Water (Surface, Eff., G	round)						
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile Org	anic GC/MS							
	LCSD		74		7			07/19/2011
2-Fluorophenol <surr></surr>	LCS		64	(20-110)				07/19/2011
	LCSD		53		18			07/19/2011
Nitrobenzene-d5 <surr></surr>	LCS		74	(40-110)				07/19/2011
	LCSD		68		9			07/19/2011
Phenol-d6 <surr></surr>	LCS		74	(10-115)				07/19/2011
	LCSD		63		16			07/19/2011
Terphenyl-d14 <surr></surr>	LCS		90	(50-135)				07/19/2011
	LCSD		88		1			07/19/2011

Batch	XMS6074
Method	SW8270D TCLP
~	

Instrument HP 6890/5973 STA

SGS Ref.#	1038355 Lab Cont	rol Sample			Printed	Date/Time	07/22/2011	12:13	
					Prep	Batch	MXT4550		
Client Name	URS Corporation					Method	SW3010A		
Project Name/#	26220967.02000 Ket	chikan Dock				Date	07/18/2011		
Matrix	Solid/Soil (Wet Wei	ght)							
QC results affect th	e following production sample	S.							
1113163001									
Parameter		QC Results	Pet Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date	
TCLP Constitu Lead	ents Metals LCS	1.03	103	(80-120)			1 mg/L	07/19/2011	
Batch Method Instrument	MMS7090 SW6020 TCLP Perkin Elmer Sciex ICP-	MS P3							

SGS	A	A	
UUU			C. Service for the service for
	<u>v</u>	U	

SGS Ref.#	1038357 1038358	Matrix Sp Matrix Sp	ike bike Duplic	ate		Printe Prep	d Date/Time Batch Method Date	07/22/201 MXT455(Waters Di 07/18/201) gest for Metals by ICI
Original	1113163001								
Matrix	Solid/Soil (We	t Weight)							
QC results affect 1113163001	the following production s	amples:							
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
TCLP Constit	uents Metals								
Lead	MS	(0.0310) U	9.35	94	(80-120)			10.0 mg	/L 07/19/2011
	MSE)	9.70	. 97		4 ((< 30)		/L 07/19/2011
Batch Method Instrument	MMS7090 SW6020 TCLP Perkin Elmer Sciex I	CP-MS P3	·.						

SGS	C H	SGS North America Inc. CHAIN OF CUSTODY RECORD	th America Inc. SUSTODY RECO		1113163 ^{md}	
illes c		1996	SGS Reference #:	÷÷	pageof	
CONTACT & (LOSKICHT	PROJECT/ CALCALSO PROJECT/	all alt man	SAMPLE TYPE	Preservatives Used Anatoria		
Tal ja	EMAIL:	0000	Some and a second	Required 3		
INVOICE TO:	QUOTE#: P.O.#:		A – A – A – Milti			
RESERVED SAMPLE IDENTIFICATION	TION DATE	TIME MATRIX	Samples Samples	10000	REN CENTRE	REMARKS/
DA KSLD-1	7/6/4	1000 Solid		X X		
						~
				SODAN VICINUS:	Permontal Scale of	T THE
		-		Keel	TVOL STNAT MIT	7/14/n
Collected/Relinquished By:(1)	Date Time	Received By:		DOD Project? YES NO	Data Deliverable Requirements:	12
Berl + HE	1/m//			Cooler ID		AWA-
Relinquished By: (2)	Date Time	Received By:		Requested Turnaround Time and-or Special Instructions:	ecial Instructions:	
Relinquished By: (3)	Date	Received By:				
				Temperature Blank °C:	Chain of Custody Sealt- (Circle)	tircle)
Relinquished By: (4)	Date Time	Repaired Forly about	Men.	or Ambient [] (See attached Sample Receipt Form)	INTACT BROKEN (See attached Sample Rec	ABSENT Seiptrom)
		- 1 Y - 1 Y			-	

SAMPLE RECEIPT FORM

2. .

Review Criteria:	Condition:	Comments/Action Taken:
Were custody seals intact? Note # & location, if applicable.	Yes No MA	
COC accompanied samples?	Yes No WHA	
Temperature blank compliant* (i.e., 0-6°C after correction factor)?	(Yes) No N/A	
* Note: Exemption permitted for chilled samples collected less than 8 hours ago.		
Cooler ID: @ambient w/ Therm.ID:		
Cooler ID: @ w/ Therm.ID:		
Cooler ID: @ w/ Therm.ID:		
Cooler ID: @ w/ Therm.ID;		
Cooler ID: (a) w/ Therm.ID:		
Note: If non-compliant, use form FS-0029 to document affected samples/analyses.		
If samples are received without a temperature blank, the "cooler		
temperature" will be documented in lieu of the temperature blank &		
"COOLER TEMP" will be noted to the right. In cases where neither a		
temp blank <u>nor</u> cooler temp can be obtained, note "ambient" or "chilled."	Yes No N/A	
If temperature(s) <0°C, were all sample containers ice free?		
Delivery method (specify all that apply):	Note airbill/tracking #	
USPS Alert Courier Road Runner AK Air	See Attached	
Lynden Carlile ERA PenAir		
FedEx UPS NAC Other:	Or N/A	
\rightarrow For WO# with airbills, was the WO# & airbill		
info recorded in the Front Counter eLog?	Yes No (N/A)	
\rightarrow For samples received with payment, note amount (\$) and call	ash / check / CC (circle one	e).
\rightarrow For samples received in FBKS, ANCH staff will verify all criteria	are reviewed.	SRF Initiated by:
Do samples match COC* (i.e., sample IDs, dates/times collected)?	(Yes) No N/A	
* Note: Exemption permitted if times differ <1 hr; in which case, use times on COC.		
Were analyses requested unambiguous?	Yes No N/A	
Were samples in good condition (no leaks/cracks/breakage)?	(Yes) No N/A	
Packing material used (specify all that apply): Bubble Wrap	<u> </u>	
Separate plastic bags Vermiculite Other:		
Were all VOA vials free of headspace (i.e., bubbles ≤6 mm)?	Yes No NA	
Were all soil VOAs field extracted with MeOH+BFB?	Yes No (N/A)	
Were the bottles provided by SGS? (Note apparent exceptions.)	Yes No NA	
Were proper containers (type/mass/volume/preservative*) used?	UN TES NO N/A	insufficient odume
* Note: Exemption permitted for waters to be analyzed for metals.		
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?	Yes No (NA)	
For special handling (e.g., "MI" or foreign soils, lab filter, limited	Yes No (N/A)	
volume, Ref Lab), were bottles/paperwork flagged (e.g., sticker)?		
For preserved waters (other than VOA vials, LL-Mercury or	Yes No (N/A)	
microbiological analyses), was pH verified and compliant?		
If pH was adjusted, were bottles flagged (i.e., stickers)?	Yes No NA	
For RUSH/SHORT Hold Time or site-specific QC (e.g.,	Yes No (N/A)	
BMS/BMSD/BDUP) samples, were the COC & bottles flagged (e.g.,		
stickers) accordingly? For RUSH/SHORT HT, was email sent?	_	
For any question answered "No," has the PM been notified and the	(Yes) No N/A	SRF Completed by: 10003
problem resolved (or paperwork put in their bin)?		$PM = Y_{14}FT$ N/A
Was PEER REVIEW of <i>sample numbering/labeling</i> completed	Yes No N/A	$\frac{PM = Kuft}{Peer Reviewed by: MEW}$ Metrics: 104% $7/14$
(i.e., compare WO# on containers to COC, unique lab ID on each		THE REAL OF THE PARTY
container, LIMS container labels used?)		Metrics 1040
Was selection of "Bill to" client PEER REVIEWed?	Yes No N/A	-1/11
Additional notes (if applicable):	2.00 110 1.012	L
Additional notes (if applicatio).		

Note to Client: Any "no" circled above indicates non-compliance with standard procedures and may impact data quality.

F004r26_SampleReceiptForm_revised_20110616 16 of 17

SGS North America Inc. 200 W. Potter Drive, Anchorage, AK 99518 phone (907) 562-2343, fax (907) 561-5301

Characterization of TCLP Samples for LIMS Login 10000

Date Characterized:	<u>=+/14/11</u>		Analyst:	MB
		1	ls sufficient	
Sample Container ID:	Matrix	%	volume/mass available?	Notes:
	Xylene miscible			If multiple jars were received, were they consistent? Yes / No /(NA)
B	(Top layer * = matrix 3 **) Water miscible			
3103	(Middle layer = matrix 6)		Yes No	Was there only one layer? (Yes)/ No / NA DOCK with
(ク) \ 1	Solid	100		Other observations? barnacles
	(Bottom layer = matrix 7) Xylene miscible	100		If multiple Jars were received, were they consistent?
	(Top layer * = matrix 3 **)			Yes / No / NA
	Water miscible		Yes / No	Was there only one layer? Yes / No / NA
_	(Middle layer = matrix 6) Solld			Other observations?
	(Bottom layer = matrix 7)			If multiple jars were received, were they consistent?
· · · ·	Xylene miscible (Top layer * = matrix 3 **)	ł		Yes / No / NA
1	Water miscible		Yes / No	Was there only one layer? Yes / No / NA
ļ	(Middle layer = matrix 6)			Other observations?
	Solld (Bottom layer = matrix 7)			
	Xylene miscible			If multiple is were received, were they consistent? Yes / No / NA
	(Top layer * = matrix 3 **) Water miscible			
	(Middle layer = matrix 6)		Yes / No	Was there only one layer? Yes / No / NA
	Solid			Other observations?
	(Bottom layer = matrix 7) Xylene miscible			If multiple jars were received, were they consistent?
· .	(Top layer * = matrix 3 *)			Yes / No / NA
	Water miscible (Middle layer = matrix 6)		Yes / No	Was there only one layer? Yes / No / NA
	Solid			Other observations?
	(Bottom layer = matrix 7)	/	<u> </u>	If multiple jars were received, were they consistent?
	Xylene miscible (Top layer * = matrix 3_**)			Yes / No / NA
-	Water miscible		Yes / No	Was there only one layer? Yes / No / NA
	(Middle layer = matrlx 6) Solid		-	Other observations?
	(Bottom layer = matrix 7)			If multiple jars were received, were they consistent?
	Xylene miscible (Top layer * = matrix 3 **)			Yes / No / NA
	Water miscible	<u> </u>	Yes / No	Was there only one layer? Yes / No / NA
	(Middle layer = matrix 6)		- ·	Other observations?
	Solid (Bottom layer = roatrix 7)			
	Xviene miscible			If multiple jars were received, were they consistent? Yes / No / NA
	(Top layer * = matrix 3 **) Water miscible	<u></u>	Yes / No	Was there only one layer? Yes / No / NA
	(Middle layer = matrix 6)		-	, , , , , , , , , , , , , , , , , , , ,
	Solid (Bottom layer = matrix 7)			Other observations?
	Xylene miscible	· · · · · · · · · · · · · · · · ·		If multiple jars were received, were they consistent?
	(Top layer * = matrix 3 **)	······································	4	Yes / No / NA
/	Water miscible (Middle layer = matrix 6)		Yes / No	Was there only one layer? Yes / No / NA
	Solid	<u></u>		Other observations?
/	(Bottom layer = matrix 7)			If multiple jars were received, were they consistent?
	Xylene miscible (Top layer * = matrix 3 **)		<u></u>	Yes / No / NA
	Water miseible		Yes / No	Was there only one layer? Yes / No / NA
1/	(Middle layer = matrix 6) Solid	<u> </u>	~	Other observations?
	(Bottom layer = matrix 7)			
Remember:	* = Chlorinated oils will be hear	rier than water and p	resent as the botton	n ister. a must be looned in as mairix 7.

* = Oils must be filterable to be logged in as matrix 3. Nonfilterable oils must be logged in as matrix 7.

Laboratory Data Review Checklist

Completed by:	Shane Poston
Title:	Project Chemist
Date:	September 22, 2011
CS Report Name:	Ketchikan Ship Lift Dock
Report Date:	July 22, 2011
Consultant Firm:	URS Corporation
Laboratory Name:	SGS North America, Inc., Anchorage, AK; NELAP# AK100001
Laboratory Report N	umber: 1113163
ADEC File Number:	NA
ADEC RecKey Num	ber: NA

1. Laboratory

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes CNo Comments:

Sample was submitted to SGS North America, Inc., Anchorage, AK. Sample was analyzed for TCLP lead by SW1311/6020 and TCLP Semivolatile Organics by SW1311/8270D.

b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?

🖸 Yes 🖸 No	Comments:
------------	-----------

Samples were not transferred.

2. Chain of Custody (COC)

a. COC information completed, signed, and dated (including released/received by)?

Sample receipt forms, documenting sample condition and temperature, were completed upon receipt at the laboratory. All of the COCs were signed and dated as relinquished by the field personnel and as received by the laboratory.

b. Correct analyses requested?

3. Laboratory Sample Receipt Documentation

Yes No Comments:

One sample was submitted to SGS, Anchorage, AK. Sample was received at ambient temperature. There are no temperature preservation criteria for TCLP samples.

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

Yes No Comments:

1 solid sample of dock material was submitted. Samples was collected on July 6th, 2011.

- c. Sample condition documented broken, leaking (Methanol), zero headspace (VOC vials)?
 Yes No Comments:
- d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

🖸 Yes 🛛 No

Sample receiving discrepancies were noted on the sample receipt form or laboratory case narrative.

Comments:

e. Data quality or usability affected? Explain.

Comments:

No data quality or usabilty effects observed.

4. <u>Case Narrative</u>

a. Present and understandable?

🖸 Yes 🛛 🖸 No

Comments:

b. Discrepancies, errors or QC failures identified by the lab?

Yes CNo Comments:

diameter.			
c.	. Were all cor	rrective action	s documented? Comments:
		<u>F</u> 110	Comments.
L	оныклагататаруундалараткиңтөдүндү	<u> 2019 - 107 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019</u>	Анун налаан алаан алаан алаан алаан алаан налаан налагаа алаа катан катан катан катан катан катан катан катан к Элементик на налагаан катан
d.	. What is the	effect on data	quality/usability according to the case narrative? Comments:
	The laboratory of the taboratory of the taboratory of the table of		identifies QA/QC deficiencies. Data quality/usability were ct Chemist.
<u>Samp</u>	oles Results		
a.	Correct anal	yses performe	ed/reported as requested on COC?
	💽 Yes	C No	Comments:
b.	All applicab	le holding tim	ies met?
	C Yes	C No	Comments:
c.	All soils rep	orted on a dry	weight basis?
	🖸 Yes	C No	Comments:
N	A, submitted s	sample was an	alyzed for TCLP lead and TCLP semi-volatile analystes.
d.	Are the report the project?	rted PQLs les	s than the Cleanup Level or the minimum required detection level
	🖸 Yes	🖸 No	Comments:
e.	Data quality	or usability at	ffected? Explain. Comments:
e.	Data c	luality	quality or usability a

6. QC Samples

a.	Method	Blank

i. One method blank reported per matrix, analysis and 20 samples?

Yes No Comments:

ii. All method blank results less than PQL?

Yes No Comments:

iii. If above PQL, what samples are affected? Comments:

NA

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes Comments:

NA

v. Data quality or usability affected? Explain.

Comments:

No data quality or usabilty effects observed.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes No Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No Comments:

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) CYes No Comments:

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- C Yes C No Comments:

The method SW8270D LCS/LCSD RPD exceeded the control limit for pyridine. LCS/LCSD recoveries were within control limits.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Project sample ID KSLD-1.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes Comments:

vii. Data quality or usability affected? Explain.

Comments:

The TCLP limit for pyridine is 5.0 mg/L. The associated project sample was non-detect for pyridine at reporting level of 0.124 mg/L. No data quality or usability effects observed.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?

Yes No Comments:

ii.	Accuracy - All percent recoveries (%R) reported and within method or laboratory limits?
	And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other
	analyses see the laboratory report pages)

Yes No Comments:

- iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?
- Yes No Comments:

iv. Data quality or usability affected? Explain.

Comments:

No data quality	or usabilty eff	fects observed.
<u>Soil</u>		yses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water an</u>
🖸 Yes	🖸 No	Comments:
Trip blanks are	not applicable	to this matrix/analysis.
ii Allr	esults less that	n POL?
🖸 Yes	🖸 No	Comments:
NA		
iii. If ab	oove PQL, wha	t samples are affected? Comments:
NA		
iv. Data	a quality or usa	bility affected? Explain. Comments:
No data quality	or usabilty eff	fects observed.
e. Field Duplid i. One C Yes	cate field duplicate	e submitted per matrix, analysis and 10 project samples? Comments:
ii. Sub	mitted blind to	lab?
🖸 Yes	C No	Comments:
NA		
Construction of the local division of the lo		

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:	$(R_1 - R_2)$
	x 100
	$((R_1+R_2)/2)$
	_

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

NA	
1111	
	iv. Data quality or usability affected? Explain.
	Comments:
No c	data quality or usabilty effects observed.
f. I	Decontamination or Equipment Blank (if applicable)
	🖸 Yes 🔲 No 💽 Not Applicable
	i. All results less than PQL?
	CYes CNo Comments:
NA	
	ii. If above PQL, what samples are affected?
	Comments:
NA	
	iii. Data quality or usability affected? Explain.
	Comments:
NA	
	ata Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

Yes No Comments:

There are no additional data quality issues relevant to the reported analytes.

J&S Valve®

HedFlex Duckbill Check Valves

The J&S VALVE - Duck Bill Rubber Check Valve, is a cost effective way to control back pressures from sewage treatment plants, outfalls and tidal operations. They are a fully passive backflow device requiring neither maintenance, outside sources of power, or manual assistance to operate.

The J&S VALVE - HEDFLEX Duckbill Rubber Check Valves, are offered as direct replacements for ineffective and maintenance ridden flap type check valves, which are commonly known to seize, rust and bind in un-wanted positions. Unlike flap type valves, the Duckbill rubber check valves will handle large obstructions without jamming or having swing gates binding open.

Advantages of the J&S VALVE - HEDFLEX DUCKBILL CHECKVALVE Model DBV-09 Series Duckbill Rubber Check Valves:

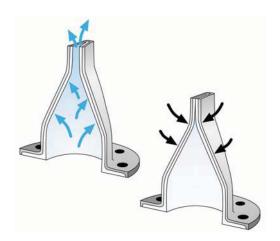
- Positive Backflow Prevention
- Manufactured to Your Head Pressure Requirements
- Simple Installation When Replacing Flap Valves
- Zero Water Hammer Problems
- 35-50 Years of Service Life
- All Rubber Construction Resists Abrasive Slurries
- NSF/ANSI Standard 61 Certified Materials
- Very Quiet Operation
- Negligible Maintenance and Energy Costs
- Will Not Warp or Freeze
- Available in Sizes 1" to 96" (Available with special IDs to suit concrete pipe)

Specify, the J&S VALVE - HEDFLEX DUCKBILL CHECK VALVE to provide backflow protection.

Elastomers: All of the J&S VALVE - HEDFLEX DUCKBILL VALVES are available in a various elastomers and back pressure capabilities to suit most applications.

The J&S VALVE - HEDFLEX DUCKBILL CHECK VALVES will not freeze or deform and function solely on inlet and back pressures which will be Present in most applications

Each valve is carefully constructed using the finest of engineered materials and built by the most experienced rubber technicians in the industry.


APPLICATIONS:

- Wastewater Treatment Plant
- Sewer Systems
- Potable Water Holding Tanks
- Airport Runways
- Parking Lots
- Residential Areas
- Commercial Centers
- Storm Water Discharge
- Flood Control Prevention
- Effluent Diffusers
- Marine Effluent Diffusers
- Flap Valve Replacement
- Aeration Systems
- Blow-Off Connections
- Lift Station Drain Valves
- Salt Water Barriers
- Tidal Walls
- Filter Drains
- Detention Ponds

When an engineered solution is needed to solve a piping or backflow problem, call J&S VALVE

Improved design allows the straight bill check valves to be used in any application, from low head pressures to heavy sea water activity. The picture clearly shows the valve washes away the beach sand and debris

The Specified Back Pressure Forces the HedFlex Rubber Check Valve to Close Preventing Back Flow.

NOTE: Dimensional Drawings are Available at JandSValve.com

2323 1st Street • Huffman, TX 77336 • Phone: 281.324.3990 Fax: 281.324.6879 • Email: sales@JandSValve.com • JandSValve.com

J&S Straight Bill Design vs. Competitors Curved Bill Design

Straight Bill Design Offers:

- Full Flow Without Curved Bill Restrictions
- Low Head Pressure to Open
- Not Affected by Flows or Current
- Can be Installed without Large Protective Headwalls
- Flow even Under Marginal Head Pressure
- · Washes Sand and Other Matter away from the Bill
- Provides Full Flushing from the Lip Area
- Not a Patented Design

Curved Billed Design Offers:

- · Partial Flow Caused by Curved Bill Restrictions
- Higher Head Pressure to Open
- Not Affective in Dual Flow Applications; Rivers and Tide Change
- No Continual Flow Under Low Cracking Pressure
- Fails if Valve Lips are Blocked with Sand and Ocean Debris
- Requires Regular Maintenance to Prevent Clogging by Debris
- Patented Design to Eliminate Competition

In the photo on the left, the straight bill design on the left and the curved bill design is on the right. Notice that the straight bill design is operating under low-flow conditions while the curved bill is not. In the photo on the right, The curve bill has failed in many applications where trapped debris prevents the back pressure from sealing the valve. The curve bill collapses under the water weight causing the bill to remain open even when back pressure applies.

2323 1st Street • Huffman, TX 77336 • Phone: 281.324.3990 Fax: 281.324.6879 • Email: sales@JandSValve.com • JandSValve.com

J&S Valve®

Improving the Industry Standard!

J&S HedFlex Check Valves are constructed with superior high grade rubber and superior polyester reinforcement to improve performance, operation, and life expectancy. There are many grades of rubber that vary in chemical make-up. The elastomer's chemical make-up "the recipe" determines cost, characteristics, durometer (hardness and stiffness), and quality of the rubber parts used to construct HedFlex Check Valves.

The HedFlex product line must have the proper durometer, for memory, and strength to allow it to operate under specific flowconditions, also to be strong enough to withstand the weight of water and specified back pressure. The exterior of the Hed-Flex Check Valves are coated to prevent damage from the ultraviolet rays of the sun. HedFlex Check Valves are fire retardant and treated so sea life will not adhere to it, and to prevent animals from eating it. The Hedflex Check Valve reinforcing plies, are a key factor in the construction of HedFlex Check Valves, for example, a tire rated for 80,000 miles of service has a superior rubber compound and reinforcement than a tire rated for 40,000 miles of service.

Duckbill Check Valves versus the competition is similar. HedFlex Check Valves use a much higher grade of rubber than the leading competitors. J&S uses a polyester fabric reinforcement compared to less expensive nylon. The polyester offers added strength to the product and will not wick fluids. Nylon Fabric is not as strong as polyester and will wick when exposed to liquids. This wicking action causes the rubber to delaminate and in-turn will cause the valve to fail.

J&S HedFlex Duckbill Check Valve Flange & Slip-on

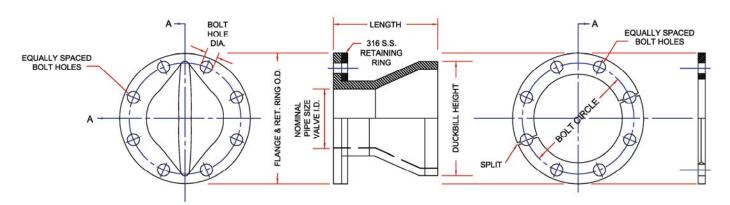
J&S HedFlex Duckbill Inline Check Valve Flanged & Slip-In

TEXAS FACTORIES

2323 1st Street • Huffman, Texas 77336 Phone: 281-324-3990 • Fax: 281-324-6879 Email: sales@JandSValve.com • Web Site: JandSValve.com

J & S Valve[®]

HedFlex Duckbill Check Valve – Model DBV-09-FL


Bolt On • Flanged • Sizes 1" - 72"

Model DBV-09-FL is designed to bolt to flanges.

Table 2: Sizes • I	Table 2: Sizes • Drilling • Weights						
HedFlex Duckbill Check Valve J&S Valve Model DBV-09-FL							
Nominal Pipe Size (Inch)	Length (Inch)	Duckbill Height (Inch)	Flange O.D. (Inch)	Bolt Circle (Inch)	No. Of Holes	Size of Holes (Inch)	Weight (Lbs)
1	4	2.125	4.25	3.13	4	0.625	3
1.5	5	2.625	5.00	3.88	4	0.625	4
2	6.5	3.875	6.00	4.75	4	0.750	6
2.5	7.5	4.625	7.00	5.50	4	0.750	8
3	8.5	5.500	7.50	6.00	4	0.750	10
4	10	7.375	9.00	7.50	8	0.750	14
5	12	8.750	10.00	8.50	8	0.875	17
6	13	10.500	11.00	9.50	8	0.875	22
8	15	13.750	13.50	11.75	8	0.875	27
10	17	17.000	16.00	14.25	12	1.000	39
12	19	19.625	19.00	17.00	12	1.000	62
14	21	24.750	21.00	18.75	12	1.250	81
16	24	26.500	23.50	21.25	16	1.250	125
18	26	29.750	25.00	22.75	16	1.250	210
20	32	31.500	27.50	25.00	20	1.250	312
24	42	43.000	32.00	29.50	20	1.375	410
28	45	46.000	36.50	34.00	28	1.375	483
30	47	49.000	38.75	36.00	28	1.375	555
32	53	51.000	41.75	38.50	28	1.625	605
36	58	55.250	46.00	42.75	32	1.625	665
42	62	66.250	53.00	49.50	36	1.625	965
48	72	74.500	59.50	56.00	44	1.625	1005
54	74	78.250	66.25	62.75	44	2.000	1085
60	82	85.000	73.00	69.25	52	2.000	1285
72	98	105.000	86.50	82.50	60	2.000	1500

Notes: 1. Larger sizes available upon request.

2. Weights are approximate.

2323 1st Street • Huffman, TX 77336 • Phone: 281.324.3990 Fax: 281.324.6879 • Email: sales@JandSValve.com • JandSValve.com

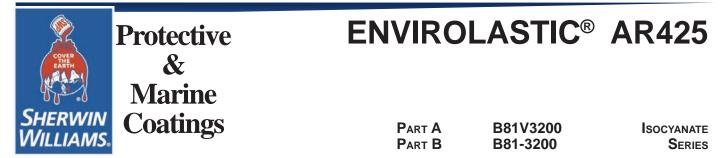
Design and Materials Subject to Change Without Notice. *Call for Any Updated Drawings.

COVER THE	& Marine	NVIROL	ASTIC ®	AR425
Sherwin Williams.	Coatings	Part A Part B	B81V3200 B81-3200	Isocyanate Series
Revised 2/11	PRODUCT II	NFORMATION		TRM.85
	PRODUCT DESCRIPTION	R	ecommended U s	ES
polyurea coating ar toughness and ela: be applied at thick greater in multiple p • Fast cure - short • Seamless flexible • Impact, tear,and • Bridges moving c	e and waterproof • Chemical resistant abrasion resistant	Designed for use in imm ible, impact resistant, wa for use in areas to includ • Water & wastewater li • Tank linings • Cooling tower linings • Secondary containme • Geotextile linings • Select fuel storage & containment • Marine bridge and der • Offshore platforms • Traffic bearing waterp • Nuclear Power Plants	terproof coating and linii le: nings • Manhole a Basins an • Cold stora nt • Waterpark • Marine bil • Tunnels • Pipe line c ining • Rail bridge	
PR	ODUCT CHARACTERISTICS	- Number of the state of the second secon		ear Fuel Facilities ear Weapons Facilities
Finish: Color:	 Suitable for use in USDA inspected facilities This product meets specific design requirements for non-safety relate nuclear plant applications in Level II, III and Balance of Plant, and DC nuclear tacilities 			
	Siver Metallic, Caribbean Green	Perfor	MANCE CHARACT	ERISTICS
Volume Solids:	100%	Test Name	Test Method	Results
VOC (calculated):	0	Abrasion Resistance	ASTM D4060	1000 g 1000 cycles CS-17: 6 mg loss
Mix Ratio:	1:1	Adhesion	ASTM D4541	Concrete - 350 psi; Steel - 2,000 psi; Wood - 250 psi
Recomme	ended Spreading Rate per coat:	Coefficient of Linear Thermal Expansion	ASTM C531 (in/in/°F)	4 x 10⁻⁵
Wet mils (micron		Crack Bridging (@ -26°C (-15°F) @ 1/8")	ASTM C836	Passed
Dry mils (micron ~Coverage sq ft		Nuclear Decontamination*	ASTM D4256/ANSI N 5.12	99.5% (Hanford)
Theoretical covera	age sq ft/gal 1600 (39.2)	Durometer Hardness	ASTM D2240	Shore D-51
(m²/L) @ 1 mil / 25		Fire Test of Roof Covering	ASTM E108 (compa- rable to UL 790)	Class A
Drying Schee	dule @ 30.0 mils wet (750 microns):	Gardner Impact	ASTM D2794 (1/32" steel panels)	>160 in-lbs, direct and indirect
To touch:	@ 73°F/23°C <i>50% RH</i> 45 seconds	Mandrel Bend	ASTM D522 Conical Bend (1/32" steel panel)	Pass
To recoat:		QUV Weatherometer	ASTM G53, 3000 hours, UVB 313 bulb	Property Retention >90%
minimum: maximum: Gel time: Tack free:	45 seconds 16 hours 15 seconds 45 seconds	Radiation Tolerance*	ASTM D4082 / ANSI 5.12	Pass at 30 mils (750 microns), 60 mils (1500 microns), 120 mils (3000 microns), & 250 mils (6250 microns)
Light traffic: To cure: If maximum recoat ti	2 hours 24 hours me is exceeded, abrade surface before recoating.	Salt Spray Corrosion	ASTM B117, 3000 hours	Blisters: None; Corrosion from scribe: 7.0 mm; Elcometer adhesion: 2,000 psi
	perature, humidity, and film thickness dependent. None None	Surface Burning Characteristics (Tun- nel Test) @ 20.0 mils (500 microns) dft	ASTM E84 (Rating: Class 1)	Flame Spread: 10; Smoke Density: 35
Shelf Life:	12 months, unopened	Tear Strength	ASTM D1004	495 pli
Flash Point:	Store indoors at 70°F (21°C) to 90°F (32°C) 200°F (93°C)	Tensile Elongation	ASTM D638 ASTM D638	425% 100% Modulus: 1,280 psi; 300% Modulus: 2,100 psi
Viscosity (mixed		Tensile Strength	ASTM D638	3,000 psi
Reducer: Clean Up:	Not recommended Butyl Cellusolve™ (R6K25) or Dowanol PM™	Water Vapor	ASTM D1653-03, Method A (dry cup), Condition A; ASTM E96-00 Desiccant Method, Procedure A	60 mils (1500 microns), 77°F (25°C), 50% RH, 0.50 grains/hr ft² in Hg
		*Substrate: Steel	Method, Procedure A	continued on bac

&

Marine

ENVIROLASTIC® AR425


PART A B81V3200 PART B B81-3200

ISOCYANATE SERIES

PRODUCT INFORMATION

TRM.85

					TRM.85	
Recommended Systems				Surface Preparation		
Stool ((lining):	Dry Film Th <u>Mils</u>	nickness / ct. (Microns)		y, and in sound condition. Remove all oil, ust, and other foreign material to ensure	
1 ct.	EnviroLastic AR425	60.0-80.0*	(1500-2000)*	Refer to product Applicati	on Bulletin for detailed surface prepara-	
Steel.	with hold primer (lining):			tion information.		
1 ct.	Copoxy Shop Primer	1.0 -1.5**	(25-40)**	Minimum recommended	surface preparation:	
1 ct.	EnviroLastic AR425	60.0-80.0*	(1500-2000)*	Steel: Atmospheric:	SSPC-SP10/NACE 2, 3 mil	
Concr	ete (lining):			Immersion:	(75 micron) profile SSPC-SP10/NACE 2, 3 mil	
1 ct.	Corobond HS Epoxy Primer	3.0-4.0**	(75-100)**		(75 micron) profile	
1 ct.	EnviroLastic AR425	60.0-80.0*	(1500-2000)*	Concrete & Masonry:	SSPC-SP13/NACE 6 or ICRI No. 310.2, CSP 3-5.	
Concr	ete (containment and flooring	g):		Surface Condition	Preparation Standards of ISO 8501-1 Swedish Std.	
1 ct.	Corobond HS Epoxy Primer	3.0-4.0**	(75-100)**	Surface	BS7079:A1 SIS055900 SSPC NACE	
1 ct.	EnviroLastic AR425	40.0-60.0	(1000-1500)	White Metal Near White Metal Commercial Blast	Sa 3 Sa 3 SP 5 1 Sa 2.5 Sa 2.5 SP 10 2 Sa 2 SP 6 3 Sa 2 SP 6 3 Sa 1 SP 7 4	
1-2 cts	. EnviroLastic PA	4.0-5.0	(100-125)	Brush-Off Blast	CSF9 CSF9 SP9	
Concr	ete (containment, flooring):			Power Tool Cleaning Pitted & Ru	CSt 2 CSt 2 SP 2 - sted DSt 2 DSt 2 SP 2 - CSt 3 CSt 3 SP 3 - sted DSt 3 DSt 3 SP 3 -	
1 ct.	Corobond HS Epoxy Primer	3.0-4.0**	(75-100)**			
1 ct.	EnviroLastic AR425	40.0-60.0*	· · ·		_	
1-2 cts	. Cor-Cote HCR FF	15.0-20.0	(375-500)		TINTING	
Concr	ete (mechanical equipment ro	oom):		Do not tint.		
1 ct. Corobond HS Epoxy Primer 3.0-4.0** (75-100)**		Applic	CATION CONDITIONS			
1 ct.	EnviroLastic AR425	30.0-40.0	(750-1000)			
1 cts.	EnviroLastic AR200 HD	10.0-20.0	(250-500)	Temperature: Material:	150°F (66°C) minimum, 170°F (77°C)	
	(texture)				maximum	
Conor	oto low tomporature or fact a			Air and surface:	-20°F (-29°C) minimum, 120°F (49°C) maximum	
Loncr 1 ct.	ete, low temperature or fast s EnviroLastic LT Primer	2.0-3.0	(50-75)		At least 5°F (2.8°C) above dew point	
1 ct.	EnviroLastic AR425		(750-1000)*	Relative humidity:	80% maximum	
	ovtilo Lining (corthon baco);			Refer to product Application	Bulletin for detailed application information.	
Geo- n 1 ct.	extile Lining (earthen base): Geo-textile non-woven, 3-4oz		tromat"	0		
	Style 4599				ring Information	
1 ct.	EnviroLastic AR425	80.0-100.0	*(2000-2500)*	Packaging: Part A:	53 gallon (200L) drums	
*When	used as a lining in immersion s	service, a mir	nimum total	Part B:	53 gallon (200L) drums	
	n thickness of 60.0 mils (1500 n er to Performance Tips section	nicrons) is ree	quired.	Safe	TY PRECAUTIONS	
IVER	a to renormance rips section			Refer to the MSDS sheet before use.		
The systems listed above are representative of the product's use,		Published technical data and in Contact your Sherwin-Williams instructions.	nstructions are subject to change without notice. representative for additional technical data and			
other s	systems may be appropriate.				WARRANTY	
	DISCLAIME	R			y warrants our products to be free of manufactur- able Sherwin-Williams guality control procedures.	
The information and recommendations set forth in this Product Data Sheet are based upon tests conducted by or on behalf of The Sherwin-Williams Company. Such information and recommendations set forth herein are subject to change and pertain to the product offered at the time of publication. Consult your Sherwin- Williams representative to obtain the most recent Product Data Information and Application Bulletin.		Liability for products proven defe- tive product or the refund of the determined by Sherwin-William OF ANY KIND IS MADE BY SH STATUTORY, BY OPERATION	able Sherwin-Williams quality control procedures. ective, if any, is limited to replacement of the defec- e purchase price paid for the defective product as 1s. NO OTHER WARRANTY OR GUARANTEE IERWIN-WILLIAMS, EXPRESSED OR IMPLIED, I OF LAW OR OTHERWISE, INCLUDING MER- 5 FOR A PARTICULAR PURPOSE.			

Revised 2/11

APPLICATION BULLETIN

TRM.85

SURFACE PREPARATIONS

Surface must be clean, dry, and in sound condition. Remove all oil, dust, grease, dirt, loose rust, and other foreign material to ensure adequate adhesion.

Iron & Steel (immersion service)

Remove all oil and grease from surface by Solvent Cleaning per SSPC-SP1. Minimum surface preparation is Near White Metal Blast Cleaning per SSPC-SP10/NACE 2. Blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (3 mils / 75 microns). Remove all weld spatter and round all sharp edges. Prime any bare steel the same day as it is cleaned or before flash rusting occurs.

Iron & Steel (atmospheric service)

Remove all oil and grease from surface by Solvent Cleaning per SSPC-SP1. Minimum surface preparation is Near White Metal Blast Cleaning per SSPC-SP10/NACE 2. Blast clean all surfaces using a sharp, angular abrasive for optimum surface profile (3 mils / 75 microns). Prime any bare steel the same day as it is cleaned or before flash rusting occurs.

Concrete and Masonry

For surface preparation, refer to SSPC-SP13/NACE 6, or ICRI No. 310.2, CSP 3-5. Surfaces should be thoroughly clean and dry. Concrete and mortar must be cured at least 28 days @ 75°F (24°C). Remove all loose mortar and foreign material. Surface must be free of laitance, concrete dust, dirt, form release agents, moisture curing membranes, loose cement and hardeners. Fill bug holes, air pockets and other voids with Steel-Seam FT910. Primer required.

Follow the standard methods listed below when applicable:

ASTM D4258 Standard Practice for Cleaning Concrete.

ASTM D4259 Standard Practice for Abrading Concrete.

ASTM D4260 Standard Practice for Etching Concrete. ASTM F1869 Standard Test Method for Measuring Moisture Vapor

Emission Rate of Concrete.

SSPC-SP 13/Nace 6 Surface Preparation of Concrete. ICRI No. 310.2 Concrete Surface Preparation.

Concrete, Immersion Service:

For surface preparation, refer to SSPC-SP13/NACE 6, Section 4.3.1 or 1.3.2 or ICRI No. 310.2, CSP 3-5.

Surface Preparation Standards						
	Condition of Surface	ISO 8501-1 BS7079:A1	Swedish Std. SIS055900	SSPC	NACE	
White Metal Near White Metal		Sa 3 Sa 2.5	Sa 3 Sa 2.5	SP 5 SP 10	1	
Commercial Blast Brush-Off Blast	Durited	Sa 2 Sa 1	Sa 2 Sa 1	SP 6 SP 7	3 4	
Hand Tool Cleaning	Rusted Pitted & Rusted	C St 2 D St 2	C St 2 D St 2	SP 2 SP 2	-	
Power Tool Cleaning	Rusted Pitted & Rusted	C St 3 D St 3	C St 3 D St 3	SP 3 SP 3	-	

Application Conditions

Temperature: Material:

Air and surface:

150°F (66°C) minimum, 170°F (77°C) maximum -20°F (-29°C) minimum, 120°F (49°C) maximum At least 5°F (2.8°C) above dew point

Relative humidity:

80% maximum

APPLICATION EQUIPMENT

The following is a guide. Changes in pressures and tip sizes may be needed for proper spray characteristics. Always purge spray equipment before use with listed reducer. Any reduction must be compliant with existing VOC regulations and compatible with the existing environmental and application conditions.

ReducerNot recommended

Clean-upButyl Cellusolve™ (R6K25) or Dowanol PM™

Plural Component Heated Spray Equipment:

Equipment	Graco Reactor EXP2 or HXP3
Gun	GX7 DI,GX7-400, or GX-8
Fluid Pressure	2,200 psi
Air Pressure	100 psi
A Side Temperature	150-170F
B Side Temperature	150-170f
Inlet Strainer Screen	30 mesh
Gun Screen	80 mesh

If specific application equipment is not listed above, equivalent equipment may be substituted.

Protective &	ENVIROLASTIC [®] AR425
SHERWIN VILLIAMS. Marine Coatings	PART A B81V3200 Isocyanate Part B B81-3200 Series
	TION BULLETIN TRM.85
APPLICATION PROCEDURES	PERFORMANCE TIPS
Surface preparation must be completed as indicated.	For concrete, always perform Calcium Chloride test as per ASTM F1869. Do not proceed with MVE >3 lbs.
Mixing Instructions: Agitate resin blend (B) component thorowith a drum mixer before use to disperse pigment and assum mogeneity. Do not thin. Do not mix "A" and "B" resins tog Caution: Do not agitate in air and moisture.	e ho- they become tack free. "Tack free" is defined as slight to medium
Apply paint at the recommended film thickness and spre rate as indicated below:	For immersion applications, a minimum total dry film thickness of 40 mils (1000 microns) on steel and 60 mils (1500 microns) on concrete is required.
Recommended Spreading Rate per coat: Minimum Maxim	For Immersion Service: (if required) Holiday test in accordance with ASTM D5162 for steel, or ASTM D4787 for concrete.
Wet mils (microns) 30.0 (750) 250.0 (60) Dry mils (microns) 30.0 (750) 250.0 (60)	250) May be applied in one or two coats to achieve the recommended
Coverage sq ft/gal (m²/L) 6 (0.15) 53 (7 Theoretical coverage sq ft/gal (m²/L) 1600 (39.2)	.3) For steel, stripe coat all chine, welds, bolted connections, and sharp angles to prevent early failure in these areas. For concrete, all cracks must receive a 6" wide by 30 mil (750 micron) dft detail
Drying Schedule @ 30.0 mils wet (750 microns @ 73°F/23°C 50% RH	Coat. Use only heated, plural component equipment capable of product- ing 2,500 psi at 160°F (71°C) and 2 gallon (7.56L) /minute output consistently.
To touch: 45 seconds To recoat: 45 seconds minimum: 45 seconds	In order to avoid blockage of spray equipment, clean equipment before use or before periods of extended downtime with Butyl Cellusolve™ (R6K25), Dowanol PM™, or Propylene Glycol.
maximum:16 hoursGel time:15 secondsTack free:45 seconds	While spraying, use a 50% overlap with each pass of the gun to avoid holidays, bare areas, and pinholes. If necessary, cross spray at a right angle.
Light traffic: 2 hours To cure: 24 hours If maximum recoat time is exceeded, abrade surface before record Drying time is temperature, humidity, and film thickness dependence Pot Life: None Sweat-in-time: None	~ I at application various ourtage irregularities material last during
Application of coating above maximum or below min	mum Do not agitate in air and moisture.
recommended spreading rate may adversely affect co performance.	Consult your Sherwin-Williams representative for specific applica- tion and performance recommendations.
	Refer to Product Information sheet for additional performance characteristics and properties.
CLEAN UP INSTRUCTIONS	SAFETY PRECAUTIONS
Clean spills and spatters immediately with Butyl Cellusolve™ (R6P Dowanol PM™. Clean tools and equipment immediately after use (ing both "A" and "B" sides of plural component spray system) with	nclud- Published technical data and instructions are subject to change without notice. Contact your Sherwin-Williams representative for additional technical data and
Cellusolve™ (R6K25) or Dowanol PM™.	WARRANTY
DiscLaimer The information and recommendations set forth in this Product Data Sh based upon tests conducted by or on behalf of The Sherwin-Williams Co Such information and recommendations set forth herein are subject to char pertain to the product offered at the time of publication. Consult your S Williams representative to obtain the most recent Product Data Informati Application Bulletin.	hpany. Jean determined by Sherwin-Williams. NO OTHER WARRANTY OR GUARANTEE